Chan, Y.* ; Salem, R.M.* ; Hsu, Y.H.* ; McMahon, G.* ; Pers, T.H.* ; Vedantam, S.* ; Esko, T.* ; Guo, M.H.* ; Lim, E.T.* ; GIANT Consortium (Albrecht, E. ; Gieger, C. ; Grallert, H. ; Heid, I.M. ; Illig, T. ; Müller-Nurasyid, M. ; Peters, A. ; Thorand, B. ; Wichmann, H.-E.) ; Franke, L.* ; Smith, G.D.* ; Strachan, D.P.* ; Hirschhorn, J.N.*
Genome-wide analysis of body proportion classifies height-associated variants by mechanism of action and implicates genes important for skeletal development.
Am. J. Hum. Genet. 96, 695-708 (2015)
Human height is a composite measurement, reflecting the sum of leg, spine, and head lengths. Many common variants influence total height, but the effects of these or other variants on the components of height (body proportion) remain largely unknown. We studied sitting height ratio (SHR), the ratio of sitting height to total height, to identify such effects in 3,545 African Americans and 21,590 individuals of European ancestry. We found that SHR is heritable: 26% and 39% of the total variance of SHR can be explained by common variants in European and African Americans, respectively, and global European admixture is negatively correlated with SHR in African Americans (r(2) approximate to 0.03). Six regions reached genome-wide significance (p < 5 x 10(-8)) for association with SHR and overlapped biological candidate genes, including TBX2 and IGFBP3. We found that 130 of 670 height-associated variants are nominally associated (p < 0.05) with SHR, more than expected by chance (p = 5 x 10(-40)). At these 130 loci, the height-increasing alleles are associated with either a decrease (71 loci) or increase (59 loci) in SHR, suggesting that different height loci disproportionally affect either leg length or spine/head length. Pathway analyses via DEPICT revealed that height loci affecting SHR, and especially those affecting leg length, show enrichment of different biological pathways (e.g., bone/cartilage/growth plate pathways) than do loci with no effect on SHR (e.g., embryonic development). These results highlight the value of using a pair of related but orthogonal phenotypes, in this case SHR with height, as a prism to dissect the biology underlying genetic associations in polygenic traits and diseases.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Cardiovascular Risk-factors; Leg Length; Atherosclerosis Risk; African-americans; Binding-protein; Adult Height; Growth; Heart; Health; Components
Keywords plus
Language
english
Publication Year
2015
Prepublished in Year
HGF-reported in Year
2015
ISSN (print) / ISBN
0002-9297
e-ISSN
1537-6605
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 96,
Issue: 5,
Pages: 695-708
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
New York, NY
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-504091-002
G-504100-001
G-504000-002
G-504000-007
G-504091-004
Grants
Copyright
Erfassungsdatum
2015-05-29