PuSH - Publication Server of Helmholtz Zentrum München

Mellage, A.* ; Eckert, D.* ; Grösbacher, M. ; Inan, A.Z.* ; Cirpka, O.A.* ; Griebler, C.

Dynamics of suspended and attached aerobic toluene degraders in small-scale flow-through sediment systems under growth and starvation conditions.

Environ. Sci. Technol. 49, 7161-7169 (2015)
Postprint DOI PMC
Open Access Green
The microbially mediated reactions, that are responsible for field-scale natural attenuation of organic pollutants, are governed by the concurrent presence of a degrading microbial community, suitable energy and carbon sources, electron acceptors, as well as nutrients. The temporal lack of one of these essential components for microbial activity, arising from transient environmental conditions, might potentially impair in-situ biodegradation. This study presents results of small scale flow-through experiments aimed at ascertaining the effects of substrate-starvation periods on the aerobic degradation of toluene by Pseudomonas putida F1. During the course of the experiments, concentrations of attached and mobile bacteria, as well as toluene and oxygen were monitored. Results from a fitted reactive-transport model, along with the observed profiles, show the ability of attached cells to survive substrate-starvation periods of up to four months and suggest a highly dynamic exchange between attached and mobile cells under growth conditions and negligible cell detachment under substrate-starvation conditions. Upon reinstatement of toluene, it was readily degraded without a significant lag period, even after a starvation period of 130 days. Our experimental and modeling results strongly suggest that aerobic biodegradation of BTEX-hydrocarbons at contaminated field sites is not hampered by intermittent starvation periods of up to four months.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.330
2.011
12
15
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Unsaturated Porous-media; Contaminant Transport; Bacterial Transport; Natural Attenuation; Cell Concentration; Aquifer; Biodegradation; Groundwater; Dormancy; Survival
Language english
Publication Year 2015
HGF-reported in Year 2015
ISSN (print) / ISBN 0013-936X
e-ISSN 1520-5851
Quellenangaben Volume: 49, Issue: 12, Pages: 7161-7169 Article Number: , Supplement: ,
Publisher ACS
Publishing Place Washington, DC
Reviewing status Peer reviewed
POF-Topic(s) 20403 - Sustainable Water Management
Research field(s) Environmental Sciences
PSP Element(s) G-504300-002
G-504300-006
PubMed ID 26009808
Scopus ID 84935033468
Erfassungsdatum 2015-06-03