Dynamics of suspended and attached aerobic toluene degraders in small-scale flow-through sediment systems under growth and starvation conditions.
Environ. Sci. Technol. 49, 7161-7169 (2015)
The microbially mediated reactions, that are responsible for field-scale natural attenuation of organic pollutants, are governed by the concurrent presence of a degrading microbial community, suitable energy and carbon sources, electron acceptors, as well as nutrients. The temporal lack of one of these essential components for microbial activity, arising from transient environmental conditions, might potentially impair in-situ biodegradation. This study presents results of small scale flow-through experiments aimed at ascertaining the effects of substrate-starvation periods on the aerobic degradation of toluene by Pseudomonas putida F1. During the course of the experiments, concentrations of attached and mobile bacteria, as well as toluene and oxygen were monitored. Results from a fitted reactive-transport model, along with the observed profiles, show the ability of attached cells to survive substrate-starvation periods of up to four months and suggest a highly dynamic exchange between attached and mobile cells under growth conditions and negligible cell detachment under substrate-starvation conditions. Upon reinstatement of toluene, it was readily degraded without a significant lag period, even after a starvation period of 130 days. Our experimental and modeling results strongly suggest that aerobic biodegradation of BTEX-hydrocarbons at contaminated field sites is not hampered by intermittent starvation periods of up to four months.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Unsaturated Porous-media; Contaminant Transport; Bacterial Transport; Natural Attenuation; Cell Concentration; Aquifer; Biodegradation; Groundwater; Dormancy; Survival
Keywords plus
Language
english
Publication Year
2015
Prepublished in Year
HGF-reported in Year
2015
ISSN (print) / ISBN
0013-936X
e-ISSN
1520-5851
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 49,
Issue: 12,
Pages: 7161-7169
Article Number: ,
Supplement: ,
Series
Publisher
ACS
Publishing Place
Washington, DC
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
20403 - Sustainable Water Management
Research field(s)
Environmental Sciences
PSP Element(s)
G-504300-002
G-504300-006
Grants
Copyright
Erfassungsdatum
2015-06-03