Dror, A.A.* ; Politi, Y.* ; Shahin, H.* ; Lenz, D.R.* ; Dossena, S.* ; Nofziger, C.* ; Fuchs, H. ; Hrabě de Angelis, M. ; Paulmichl, M.* ; Weiner, S.* ; Avraham, K.B.*
Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation.
J. Biol. Chem. 285, 21724-21735 (2010)
Calcium oxalate stone formation occurs under pathological conditions and accounts for more than 80% of all types of kidney stones. In the current study, we show for the first time that calcium oxalate stones are formed in the mouse inner ear of a genetic model for hearing loss and vestibular dysfunction in humans. The vestibular system within the inner ear is dependent on extracellular tiny calcium carbonate minerals for proper function. Thousands of these biominerals, known as otoconia, are associated with the utricle and saccule sensory maculae and are vital for mechanical stimulation of the sensory hair cells. We show that a missense mutation within the Slc26a4 gene abolishes the transport activity of its encoded protein, pendrin. As a consequence, dramatic changes in mineral composition, size, and shape occur within the utricle and saccule in a differential manner. Although abnormal giant carbonate minerals reside in the utricle at all ages, in the saccule, a gradual change in mineral composition leads to a formation of calcium oxalate in adult mice. By combining imaging and spectroscopy tools, we determined the profile of mineral composition and morphology at different time points. We propose a novel mechanism for the accumulation and aggregation of oxalate crystals in the inner ear.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Amino Acid Sequence; Animals; Anion Transport Proteins/metabolism; Calcium Oxalate/chemistry*; Cochlea/pathology; Deafness/genetics; Ear; Inner/pathology; Extracellular Matrix/metabolism; Hair Cells; Auditory/metabolism; Humans; Membrane Transport Proteins/genetics*; Mice; Microscopy; Electron; Scanning/methods; Molecular Sequence Data; Mutation; Missense*; Rats; Sequence Homology; Amino Acid; Spectroscopy; Fourier Transform Infrared; Spectrum Analysis; Raman/methods
Keywords plus
Language
english
Publication Year
2010
Prepublished in Year
HGF-reported in Year
2010
ISSN (print) / ISBN
0021-9258
e-ISSN
1083-351X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 285,
Issue: 28,
Pages: 21724-21735
Article Number: ,
Supplement: ,
Series
Publisher
American Society for Biochemistry and Molecular Biology
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30201 - Metabolic Health
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-500600-003
Grants
Copyright
Erfassungsdatum
2010-07-13