PuSH - Publication Server of Helmholtz Zentrum München

Bi, Z. ; Merl-Pham, J. ; Uehlein, N.* ; Zimmer, I. ; Mühlhans, S. ; Aichler, M. ; Walch, A.K. ; Kaldenhoff, R.* ; Palme, K.* ; Schnitzler, J.-P. ; Block, K.

RNAi-mediated downregulation of poplar Plasma membrane Intrinsic Proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

J. Proteomics 128, 321-332 (2015)
Postprint DOI PMC
Open Access Green
Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Biological significance The present work is a comprehensive survey combining leaf plasma membrane proteomics and physiological methods to assess the functionality of the whole PIP subfamily in tree model system.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.888
1.103
16
16
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Pip ; Populus×canescens ; Aquaporin ; Photosynthesis ; Plasma Membrane Intrinsic Protein ; Plasma Membrane Proteomics ; Stomatal Movement
Language english
Publication Year 2015
HGF-reported in Year 2015
ISSN (print) / ISBN 1874-3919
e-ISSN 1876-7737
Quellenangaben Volume: 128, Issue: , Pages: 321-332 Article Number: , Supplement: ,
Publisher Elsevier
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
30203 - Molecular Targets and Therapies
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30205 - Bioengineering and Digital Health
Research field(s) Environmental Sciences
Enabling and Novel Technologies
PSP Element(s) G-504991-001
G-505700-001
G-500300-001
G-500390-001
Scopus ID 84940524451
PubMed ID 26248320
Erfassungsdatum 2015-02-09