PuSH - Publication Server of Helmholtz Zentrum München

Peters, M.J.* ; Joehanes, R.* ; Pilling, L.C.* ; Schurmann, C.* ; Conneely, K.N.* ; Powell, J.* ; Reinmaa, E.* ; Sutphin, G.L.* ; Zhernakova, A.* ; Schramm, K. ; Wilson, Y.A.* ; Kobes, S.* ; Tukiainen, T.* ; Ramos, Y.F.* ; Göring, H.H.H.* ; Fornage, M.* ; Liu, Y.* ; Gharib, S.A.* ; Stranger, B.E.* ; de Jager, P.L.* ; Aviv, A.* ; Levy, D.* ; Murabito, J.M.* ; Munson, P.J.* ; Huan, T.* ; Hofman, A.* ; Uitterlinden, A.G.* ; Rivadeneira, F.* ; van Rooij, J.* ; Stolk, L.* ; Broer, L.* ; Verbiest, M.M.P.J.* ; Jhamai, M.* ; Arp, P.* ; Metspalu, A.* ; Tserel, L.* ; Milani, L.* ; Samani, N.J.* ; Peterson, P.* ; Kasela, S.* ; Codd, V.* ; Peters, A. ; Ward-Caviness, C.K. ; Herder, C.* ; Waldenberger, M. ; Roden, M.* ; Singmann, P. ; Zeilinger, S. ; Illig, T.* ; Homuth, G.* ; Grabe, H.J.* ; Völzke, H.* ; Steil, L.* ; Kocher, T.* ; Martin, N.G.* ; Smith, A.K.* ; Mehta, D.* ; Binder, E.B.* ; Nylocks, K.M.* ; Kennedy, E.M.* ; Klengel, T.* ; Ding, J.* ; Suchy-Dicey, A.* ; Enquobahrie, D.A.* ; Houwing-Duistermaat, J.J.* ; Slagboom, P.E.* ; Helmer, Q.* ; den Hollander, W.* ; Raj, T.* ; Oyston, L.J.* ; Turner, S.T.* ; Blangero, J.* ; Brody, J.* ; Rotter, J.I.* ; Chen, Y.D.* ; Kloppenburg, M.* ; Bean, S.* ; Bakhshi, N.* ; Wang, Q.P.* ; Psaty, B.M.* ; Tracy, R.P.* ; Montgomery, G.W.* ; Meulenbelt, I.* ; Ressler, K.J.* ; Yang, J.* ; Franke, L.* ; Kettunen, J.* ; Visscher, P.M.* ; Neely, G.G.* ; Korstanje, R.* ; Hanson, R.L.* ; Prokisch, H. ; Ferrucci, L.* ; Esko, T.* ; Teumer, A.* ; van Meurs, J.B.* ; Johnson, A.D.*

The transcriptional landscape of age in human peripheral blood.

Nat. Commun. 6:8570 (2015)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the 'transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
11.470
3.052
262
339
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2015
HGF-reported in Year 2015
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 6, Issue: , Pages: , Article Number: 8570 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Institute of Epidemiology (EPI)
Institute of Human Genetics (IHG)
POF-Topic(s) 30202 - Environmental Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Research field(s) Genetics and Epidemiology
PSP Element(s) G-504000-001
G-504091-001
G-500700-001
PubMed ID 26490707
Scopus ID 84945143930
Erfassungsdatum 2015-11-04