PuSH - Publication Server of Helmholtz Zentrum München

Uncertainty quantification in internal dose calculations for seven selected radiopharmaceuticals.

J. Nucl. Med. 57, 122-128 (2016)
Publ. Version/Full Text Postprint DOI PMC
Open Access Green
Dose coefficients of radiopharmaceuticals have been published by the International Commission on Radiological Protection (ICRP) and the Medical Internal Radiation Dose (MIRD) Committee, but without information concerning uncertainties. The uncertainty information of dose coefficients is important, for example, to compare alternative diagnostic methods and choose the method that causes the lowest patient exposure with appropriate and comparable diagnostic quality. For the study presented here, an uncertainty analysis method was developed and used to calculate the uncertainty of the internal doses of seven common radiopharmaceuticals. METHODS: On the basis of the generalized schema of dose calculation recommended by ICRP and the MIRD Committee, an analysis based on propagation of uncertainty was developed and applied for seven radiopharmaceuticals. The method takes into account the uncertainties contributed from pharmacokinetic models and the so-called S values derived from several voxel computational phantoms previously developed at Helmholtz Zentrum München. Random and Latin hypercube sampling techniques were used to sample parameters of pharmacokinetic models and S values, and the uncertainties of absorbed doses and effective doses were calculated. RESULTS: The uncertainty factors (square root of ratio between 97.5th and 2.5th percentiles) for organ absorbed doses are in the range of 1.1 to 3.3. Uncertainty values of effective doses are lower in comparison to absorbed doses, the maximum value being approximately 1.4. The ICRP reference values showed a deviation comparable to the effective dose calculated in this study. CONCLUSION: A general statistical method was developed for calculating the uncertainty of absorbed doses and effective doses for seven radiopharmaceuticals. The dose uncertainties can be used to further identify the most important parameters in the dose calculation and provide reliable dose coefficients for risk analysis of the patients in nuclear medicine.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Radiobiology/dosimetry ; Radiopharmaceuticals ; Radiotracer Tissue Kinetics ; Internal Dosimetry ; Nuclear Medicine ; Pharmacokinetic Model ; Uncertainty Quantification ; Voxel Phantom
ISSN (print) / ISBN 0161-5505
e-ISSN 1535-5667
Quellenangaben Volume: 57, Issue: 1, Pages: 122-128 Article Number: , Supplement: ,
Publisher Society of Nuclear Medicine and Molecular Imaging
Non-patent literature Publications
Reviewing status Peer reviewed