PuSH - Publication Server of Helmholtz Zentrum München

Huber, C. ; Preis, M.* ; Harvey, P.J.* ; Grosse, S.D.* ; Letzel, T.* ; Schröder, P.

Emerging pollutants and plants - metabolic activation of diclofenac by peroxidases.

Chemosphere 146, 435-441 (2016)
Postprint DOI PMC
Open Access Green
Human pharmaceuticals and their residues are constantly detected in our waterbodies, due to poor elimination rates, even in the most advanced waste water treatment plants. Their impact on the environment and human health still remains unclear. When phytoremediation is applied to aid water treatment, plants may transform and degrade xenobiotic contaminants through phase I and phase II metabolism to more water soluble and less toxic intermediates. In this context, peroxidases play a major role in activating compounds during phase I via oxidation. In the present work, the ability of a plant peroxidase to oxidize the human painkiller diclofenac was confirmed using stopped flow spectroscopy in combination with LC-MS analysis. Analysis of an orange colored product revealed the structure of the highly reactive Diclofenac-2,5-Iminoquinone, which may be the precursor of several biological conjugates and breakdown products in planta.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Diclofenac ; Iminoquinone ; Lc-ms ; Peroxidase ; Stopped Flow Spectroscopy; Typha-latifolia; Drinking-water; Oxidation; Horseradish; Fate; Myeloperoxidase; Identification; Gemfibrozil; Generation; Responses
ISSN (print) / ISBN 0045-6535
e-ISSN 1879-1298
Journal Chemosphere
Quellenangaben Volume: 146, Issue: , Pages: 435-441 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Kidlington, Oxford
Non-patent literature Publications
Reviewing status Peer reviewed