Molecular formula assignment for Dissolved Organic Matter (DOM) using high-field FT-ICR-MS: Chemical perspective and validation of sulphur-rich organic components (CHOS) in pit lake samples.
    
    
        
    
    
        
        Anal. Bioanal. Chem. 408, 2461-2469 (2016)
    
    
 	
    
	
	  DOI
 DOI
	  PMC
 PMC
		
		
			Open Access Green as soon as Postprint is submitted to ZB.
		
     
    
      
      
	
	    Molecular formula assignment is one of the key challenges in processing high-field Fourier transform ion cyclotron resonance mass spectrometric (FT-ICR-MS) datasets. The number of potential solutions for an elemental formula increases exponentially with increasing molecular mass, especially when non-oxygen heteroatoms like N, S or P are included. A method was developed from the chemical perspective and validated using a Suwannee River Fulvic Acid (SRFA) dataset which is dominated by components consisting exclusively of C, H and O (78 % CHO). In order to get information on the application range and robustness of this method, we investigated a FT-ICR-MS dataset which was merged from 18 mine pit lake pore waters and 3 river floodplain soil waters. This dataset contained 50 % CHO and 18 % CHOS on average, whereas the former SRFA dataset contained only 1.5 % CHOS. The mass calculator was configured to allow up to five nitrogen atoms and up to one sulphur atom in assigning formulas to mass peaks. More than 50 % multiple-formula assignments were found for peaks with masses > 650 Da. Based on DBE - O frequency diagrams, many CHO, CHOS1, CHON1 and CHON1S1 molecular series were ultimately assigned to many m/z and considered to be reliable solutions. The unequivocal data pool could thus be enlarged by 523 (6.8 %) CHOS1 components. In contrast to the method validation with CHO-rich SRFA, validation with sulphur-rich pit lake samples showed that formulas with a higher number of non-oxygen heteroatoms can be more reliable assignments in many cases. As an example: CHOS molecular series were reliable and the CHO classes were unreliable amongst other molecular classes in many multiple-formula assignments from the sulphur-rich pit lake samples. Graphical abstract An exemplary frequency versus DBE - O diagram. CHOS components but not CHO (and not CHON2 or CHON2S) components were considered here reliable.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Chos/chon Molecular Series ; Dom ; Ft-icr-ms ; Formula Assignment ; Validation; Resonance Mass-spectrometry; Photochemical Degradation; Fulvic-acids; Ionization; Spectra; Marine; Identification; Aerosol; Soil
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        
    
 
    
        Publication Year
        2016
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2016
    
 
    
    
        ISSN (print) / ISBN
        1618-2642
    
 
    
        e-ISSN
        1618-2650
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 408,  
	    Issue: 10,  
	    Pages: 2461-2469 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Springer
        
 
        
            Publishing Place
            Heidelberg
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30202 - Environmental Health
    
 
    
        Research field(s)
        Environmental Sciences
    
 
    
        PSP Element(s)
        G-504800-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2016-02-24