PuSH - Publication Server of Helmholtz Zentrum München

Sarkar, R. ; Mainz, A. ; Busi, B. ; Barbet-Massin, E. ; Kranz, M.* ; Hofmann, T.* ; Reif, B.

Immobilization of soluble protein complexes in MAS solid-state NMR: Sedimentation versus viscosity.

Solid State Nucl. Magn. Reson. 76-77, 7-14 (2016)
Postprint DOI PMC
Open Access Green
In recent years, MAS solid-state NMR has emerged as a technique for the investigation of soluble protein complexes. It was found that high molecular weight complexes do not need to be crystallized in order to obtain an immobilized sample for solid-state NMR investigations. Sedimentation induced by sample rotation impairs rotational diffusion of proteins and enables efficient dipolar coupling based cross polarization transfers. In addition, viscosity contributes to the immobilization of the molecules in the sample. Natural Deep Eutectic Solvents (NADES) have very high viscosities, and can replace water in living organisms. We observe a considerable amount of cross polarization transfers for NADES solvents, even though their molecular weight is too low to yield significant sedimentation. We discuss how viscosity and sedimentation both affect the quality of the obtained experimental spectra. The FROSTY/sedNMR approach holds the potential to study large protein complexes, which are otherwise not amenable for a structural characterization using NMR. We show that using this method, backbone assignments of the symmetric proteasome activator complex (1.1MDa), and high quality correlation spectra of non-symmetric protein complexes such as the prokaryotic ribosome 50S large subunit binding to trigger factor (1.4MDa) are obtained.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.250
0.964
7
7
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Magic Angle Spinning ; Perdeuteration ; Sedimentation ; Soluble Protein Complexes ; Viscosity; Alpha-b-crystallin; Deep Eutectic Solvents; Heat-shock-protein; Structural Heterogeneity; Perdeuterated Proteins; Deuterated Proteins; Membrane-proteins; Ionic Liquids; Spectroscopy; Resolution
Language
Publication Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 0926-2040
e-ISSN 1527-3326
Quellenangaben Volume: 76-77, Issue: , Pages: 7-14 Article Number: , Supplement: ,
Publisher Academic Press
Publishing Place Orlando, Fla.
Reviewing status Peer reviewed
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503000-001
G-503090-001
Scopus ID 84961659658
PubMed ID 27017576
Erfassungsdatum 2016-04-18