Buchfellner, A.* ; Yurlova, L.* ; Nueske, S.* ; Scholz, A.M.* ; Bogner, J.* ; Ruf, B.* ; Zolghadr, K.* ; Drexler, S.E.* ; Drexler, G.A.* ; Girst, S.* ; Greubel, C.* ; Reindl, J.* ; Siebenwirth, C.* ; Römer, T.* ; Friedl, A.A. ; Rothbauer, U.*
     
    
        
         A new nanobody-based biosensor to study endogenous PARP1 in vitro and in live human cells.
        A new nanobody-based biosensor to study endogenous PARP1 in vitro and in live human cells.
     
    
        
    
    
        
        PLoS ONE 11:e0151041 (2016)
    
    
    
      
      
	
	    Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (similar to 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Human Poly(adp-ribose) Polymerase-1; Transcriptionally Active Nucleoli; Fluorescent 2-hybrid Assay; Dna-damage Response; Actinomycin-d; Rna-synthesis; Living Cells; Chromatin-structure; Antibody Fragments; Mammalian-cells
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        
    
 
    
        Publication Year
        2016
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2016
    
 
    
    
        ISSN (print) / ISBN
        1932-6203
    
 
    
        e-ISSN
        
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 11,  
	    Issue: 3,  
	    Pages: ,  
	    Article Number: e0151041 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Public Library of Science (PLoS)
        
 
        
            Publishing Place
            Lawrence, Kan.
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
    
 
    
        Research field(s)
        Radiation Sciences
    
 
    
        PSP Element(s)
        G-521800-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2016-04-15