PuSH - Publication Server of Helmholtz Zentrum München

Hoffmann, H.* ; Zhao, G.* ; Asseng, S.* ; Bindi, M.* ; Biernath, C.J. ; Constantin, J.* ; Coucheney, E.* ; Dechow, R.* ; Doro, L.* ; Eckersten, H.* ; Gaiser, T.* ; Grosz, B.* ; Heinlein, F. ; Kassie, B.T.* ; Kersebaum, K.C.* ; Klein, C. ; Kuhnert, M.* ; Lewan, E.* ; Moriondo, M.* ; Nendel, C.* ; Priesack, E. ; Raynal, H.* ; Roggero, P.P.* ; Rötter, R.P.* ; Siebert, S.* ; Specka, X.* ; Tao, F.* ; Teixeira, E.* ; Trombi, G.* ; Wallach, D.* ; Weihermüller, L.* ; Yeluripati, J.* ; Ewert, F.*

Impact of spatial soil and climate input data aggregation on regional yield simulations.

PLoS ONE 11:e0151782 (2016)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Systems Simulation; Nitrogen Dynamics; Winter-wheat; Crop Models; Data Resolution; Scale; Water; Variability; Calibration; Weather
ISSN (print) / ISBN 1932-6203
Journal PLoS ONE
Quellenangaben Volume: 11, Issue: 4, Pages: , Article Number: e0151782 Supplement: ,
Publisher Public Library of Science (PLoS)
Publishing Place Lawrence, Kan.
Non-patent literature Publications
Reviewing status Peer reviewed