Open Access Green as soon as Postprint is submitted to ZB.
FIS modulates growth phase-dependent topological transitions of DNA in Escherichia coli.
Mol. Microbiol. 26, 519-530 (1997)
The Escherichia coli DNA-binding protein FIS serves as a DNA architectural factor in two unrelated enzymatic reactions, the site-specific inversion of DNA and transcriptional activation of stable RNA promoters. In both these processes, FIS facilitates the assembly and dynamic transitions of two structurally distinct nucleoprotein complexes. We have proposed previously that, in these systems, FIS stabilizes writhed DNA microloops by binding at multiple helically phased sites in DNA. However, FIS also binds and bends DNA at many non-specific sites and, at its maximum levels in the early exponential phase, FIS could potentially occupy a considerable part of the E. coli chromosome. Here, we show that fis affects growth phase-specific alterations in the supercoiling level of DNA. Expression of fis accelerates the accumulation of moderately supercoiled plasmids in stationary phase, which are stabilized by FIS after nutritional shift-up. In accordance with such a function, FIS modulates the relaxing and supercoiling activities of topoisomerases in vitro in a way that keeps DNA in a moderately supercoiled state. Our results suggest that the primary role of FIS is to modulate chromosomal dynamics during bacterial growth.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
ISSN (print) / ISBN
0950-382x
e-ISSN
1365-2958
Journal
Molecular Microbiology
Quellenangaben
Volume: 26,
Issue: 3,
Pages: 519-530
Publisher
Wiley
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Institute of Functional Epigenetics (IFE)