PuSH - Publication Server of Helmholtz Zentrum München

Dölken, L.* ; Malterer, G.* ; Erhard, F.* ; Kothe, S.* ; Friedel, C.C.* ; Suffert, G.* ; Marcinowski, L.* ; Motsch, N.* ; Barth, S.* ; Beitzinger, M.* ; Lieber, D.* ; Bailer, S.M.* ; Hoffmann, R.* ; Ruzsics, Z.* ; Kremmer, E. ; Pfeffer, S.* ; Zimmer, R.* ; Koszinowski, U.H.* ; Grässer, F.* ; Meister, G.* ; Haas, J.*

Systematic analysis of viral and cellular microRNA targets in cells latently infected with human γ-herpesviruses by RISC immunoprecipitation assay.

Cell Host Microbe 7, 324-334 (2010)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
The mRNA targets of microRNAs (miRNAs) can be identified by immunoprecipitation of Argonaute (Ago) protein-containing RNA-induced silencing complexes (RISCs) followed by microarray analysis (RIP-Chip). Here we used Ago2-based RIP-Chip to identify transcripts targeted by Kaposi's sarcoma-associated herpesvirus (KSHV) miRNAs (n = 114), Epstein-Barr virus (EBV) miRNAs (n = 44), and cellular miRNAs (n = 2337) in six latently infected or stably transduced human B cell lines. Of the six KSHV miRNA targets chosen for validation, four showed regulation via their 3'UTR, while two showed regulation via binding sites within coding sequences. Two genes governing cellular transport processes (TOMM22 and IPO7) were confirmed to be targeted by EBV miRNAs. A significant number of viral miRNA targets were upregulated in infected cells, suggesting that viral miRNAs preferentially target cellular genes induced upon infection. Transcript half-life both of cellular and viral miRNA targets negatively correlated with recruitment to RISC complexes, indicating that RIP-Chip offers a quantitative estimate of miRNA function.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Sarcoma-associated herpesvirus; Primary effusion lymphoma; Virus-encodes micrornas; Outer-membrane; Messenger-RNAs; RIP-chip; B-cells; Identification; Expression; Pathway
ISSN (print) / ISBN 1931-3128
e-ISSN 1934-6069
Quellenangaben Volume: 7, Issue: 4, Pages: 324-334 Article Number: , Supplement: ,
Publisher Elsevier
Non-patent literature Publications
Reviewing status Peer reviewed