PuSH - Publication Server of Helmholtz Zentrum München

Guo, S.* ; Popowicz, G.M. ; Li, D.* ; Yuan, D.* ; Wang, Y.*

Lid mobility in lipase SMG1 validated using a thiol/disulfide redox potential probe.

FEBS Open Bio 6, 477-483 (2016)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Most lipases possess a lid domain above the catalytic site that is responsible for their activation. Lipase SMG1 from Malassezia globose CBS 7966 (Malassezia globosa LIP1), is a mono- and diacylglycerol lipase with an atypical loop-like lid domain. Activation of SMG1 was proposed to be solely through a gating mechanism involving two residues (F278 and N102). However, through disulfide bond cross-linking of the lid, this study shows that full activation also requires mobility of the lid domain, contrary to a previous proposal. The newly introduced disulfide bond makes lipase SMG1 eligible as a ratiometric thiol/disulfide redox potential probe, when it is coupled with chromogenic substrates. This redox-switch lipase could also be of potential use in cascade biocatalysis.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.101
0.612
5
7
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Activation Mechanism ; Disulfide Bond ; Lid ; Redox Potential ; Redox-switch ; Smg1; Green Fluorescent Protein; Molecular-dynamics Simulations; Site-directed Mutagenesis; Malassezia-globosa; Diacylglycerol Lipase; Active-site; Mono; Indicators; Activation; Residues
Language english
Publication Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 2211-5463
Journal FEBS Open Bio
Quellenangaben Volume: 6, Issue: 5, Pages: 477-483 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Cambridge
Reviewing status Peer reviewed
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503000-003
PubMed ID 27419053
Scopus ID 84963839225
Erfassungsdatum 2016-05-10