Visual quality enhancement in optoacoustic tomography using active contour segmentation priors.
IEEE Trans. Med. Imaging 35, 2209-2217 (2016)
Segmentation of biomedical images is essential for studying and characterizing anatomical structures as well as for detection and evaluation of tissue pathologies. Segmentation has been further shown to enhance the reconstruction performance in many tomographic imaging modalities by accounting for heterogeneities in the excitation field and tissue properties in the imaged region. This is particularly relevant in optoacoustic tomography, where discontinuities in the optical and acoustic tissue properties, if not properly accounted for, may result in deterioration of the imaging performance. Efficient segmentation of optoacoustic images is often hampered by the relatively low intrinsic contrast of large anatomical structures, which is further impaired by the limited angular coverage of some commonly employed tomographic imaging configurations. Herein, we analyze the performance of active contour models for boundary segmentation in cross-sectional optoacoustic tomography. The segmented mask is employed to construct a two compartment model for the acoustic and optical parameters of the imaged tissues, which is subsequently used to improve accuracy of the image reconstruction routines. The performance of the suggested segmentation and modeling approach are showcased in tissuemimicking phantoms and small animal imaging experiments.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Biophotonics ; Image Quality ; Image Segmentation ; Multispectral Imaging ; Photoacoustic Imaging; Photoacoustic Tomography; Scattering Media; Reconstruction; Light; Algorithm; Boundary; Tissues; Snakes; Sound; Flow
Keywords plus
Language
Publication Year
2016
Prepublished in Year
HGF-reported in Year
2016
ISSN (print) / ISBN
0278-0062
e-ISSN
1558-254X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 35,
Issue: 10,
Pages: 2209-2217
Article Number: ,
Supplement: ,
Series
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Publishing Place
New York, NY [u.a.]
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505590-001
Grants
Copyright
Erfassungsdatum
2016-05-04