1H NMR-based metabolite profiling workflow to reduce inter-sample chemical shift variations in urine samples for improved biomarker discovery.
    
    
        
    
    
        
        Anal. Bioanal. Chem. 408, 4683-4691 (2016)
    
    
 	
    
	
	  DOI
 DOI
	  PMC
 PMC
		
		
			Open Access Green as soon as Postprint is submitted to ZB.
		
     
    
      
      
	
	    Metabolite profiling of urine has seen much advancement in recent years, and its analysis by nuclear magnetic resonance (NMR) spectroscopy has become well established. However, the highly variable nature of human urine still requires improved protocols despite some standardization. In particular, diseases such as kidney disease can have a profound effect on the composition of urine and generate a highly diverse sample set for clinical studies. Large variations in pH and the cationic concentration of urine play an important role in creating positional noise within datasets generated from NMR. We demonstrate positional noise to be a confounding variable for multivariate statistical tools such as statistical total correlation spectroscopy (STOCSY), thereby hindering the process of biomarker discovery. We present a two-dimensional buffering system using potassium fluoride (KF) and phosphate buffer to reduce positional noise in metabolomic data generated from urine samples with various levels of proteinuria. KF reduces positional noise in citrate peaks, by decreasing the mean relative standard deviation (RSD) from 0.17 to 0.09. By reducing positional noise with KF, STOCSY analysis of citrate peaks saw significant improvement. We further aligned spectral data using a recursive segment-wise peak alignment (RSPA) method, which leads to further improvement of the positional noise (RSD = 0.06). These results were validated using diverse selection of metabolites which lead to an overall improvement in positional noise using the suggested protocol. In summary, we provide an improved workflow for urine metabolite biomarker discovery to achieve higher data quality for better pathophysiological understanding of human diseases. Graphical abstract Citrate peaks in the range 2.75-2.5 ppm from datasets with different sample preparation protocols and with/without in silico alignment. A Citrate peaks with standard phosphate buffering and without in silico alignment. B citrate peaks with standard phosphate buffering and with in silico alignment. C citrate peak with additional potassium fluoride and standard phosphate buffering without in silico alignment. D citrate peaks with additional potassium fluoride and standard phosphate buffering with in silico alignment. Below the respective spectrum are displayed the percent relative standard deviation (RSD) of the respective citrate peaks. This is a measure of the positional noise of peaks within a (1)H NMR analysis. It can be seen that D performs the best in reducing positional noise of citrate peaks. E-H STOCSY analysis of correlating spectral features with the driver peak at 2.675 ppm (see red arrow) to identify structural correlations. As a, b, c, and d are known to be structurally correlated, STOCSY analysis should reveal r (2) = 1 if data is perfectly aligned and can therefore be used as a measure of peak alignment. E Strong positional noise does not allow identifying the c and d peaks of the AB system to be correlated. F, G Neither in silico alignment or KF addition alone can completely improve the alignment and therefore increase the correlations. H Highly improved alignment by combining both KF addition and in silico alignment reduces positional noise and elucidates all four citrate peaks to be strongly correlated.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Biomarker Discovery ; Metabolomics ; Multivariate Data Analysis ; Non-targeted ; Nuclear Magnetic Resonance Spectroscopy ; Urine; H-1-nmr Spectra; Peak Alignment; Data Sets; Normalization; Spectroscopy; Metabonomics; Plasma; Serum
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        
    
 
    
        Publication Year
        2016
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2016
    
 
    
    
        ISSN (print) / ISBN
        1618-2642
    
 
    
        e-ISSN
        1618-2650
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 408,  
	    Issue: 17,  
	    Pages: 4683-4691 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Springer
        
 
        
            Publishing Place
            Heidelberg
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30202 - Environmental Health
90000 - German Center for Diabetes Research
    
 
    
        Research field(s)
        Environmental Sciences
Helmholtz Diabetes Center
    
 
    
        PSP Element(s)
        G-504800-001
G-502400-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2016-05-18