PuSH - Publication Server of Helmholtz Zentrum München

Pradeepa, M.M.* ; Grimes, G.R.* ; Kumar, Y.* ; Olley, G.* ; Taylor, G.C.A.* ; Schneider, R. ; Bickmore, W.A.*

Histone H3 globular domain acetylation identifies a new class of enhancers.

Nat. Genet. 48, 681-686 (2016)
DOI
Open Access Green as soon as Postprint is submitted to ZB.
Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes(1). These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3)(2). H3K27ac is also widely used to identify active enhancers(3,4), and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
31.616
6.234
108
113
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Embryonic Stem-cells; Human Genome; Transcription Factors; Super-enhancers; Lateral Surface; Sequencing Data; Genes; System; Signatures; Promoters
Language
Publication Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 1061-4036
e-ISSN 1546-1718
Journal Nature Genetics
Quellenangaben Volume: 48, Issue: 6, Pages: 681-686 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place New York, NY
Reviewing status Peer reviewed
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Helmholtz Diabetes Center
PSP Element(s) G-502800-001
Erfassungsdatum 2016-06-27