PuSH - Publication Server of Helmholtz Zentrum München

Berninger, M.T.* ; Mohajerani, P. ; Kimm, M.* ; Masius, S.* ; Ma, X. ; Wildgruber, M.* ; Haller, B.* ; Anton, M.* ; Imhoff, A.B.* ; Ntziachristos, V. ; Henning, T.D.* ; Meier, R.*

Fluorescence molecular tomography of DiR-labeled mesenchymal stem cell implants for osteochondral defect repair in rabbit knees.

Eur. Radiol. 27, 1105-1113 (2017)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
OBJECTIVES: To assess labelling efficiency of rabbit mesenchymal stem cells (MSCs) using the near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) and detection of labelled MSCs for osteochondral defect repair in a rabbit model using fluorescence molecular tomography-X-ray computed tomography (FMT-XCT). METHODS: MSCs were isolated from New Zealand White rabbits and labelled with DiR (1.25-20 μg/mL). Viability and induction of apoptosis were assessed by XTT- and Caspase-3/-7-testing. Chondrogenic potential was evaluated by measurement of glycosaminoglycans. Labelled cells and unlabeled controls (n = 3) underwent FMT-XCT imaging before and after chondrogenic differentiation. Osteochondral defects were created surgically in rabbit knees (n = 6). Unlabeled and labelled MSCs were implanted in fibrin-clots and imaged by FMT-XCT. Statistical analyses were performed using multiple regression models. RESULTS: DiR-labelling of MSCs resulted in a dose-dependent fluorescence signal on planar images in trans-illumination mode. No significant reduction in viability or induction of apoptosis was detected at concentrations below 10 μg DiR/mL (p > .05); the chondrogenic potential of MSCs was not affected (p > .05). FMT-XCT of labelled MSCs in osteochondral defects showed a significant signal of the transplant (p < .05) with additional high-resolution anatomical information about its osteochondral integration. CONCLUSIONS: FMT-XCT allows for detection of stem cell implantation within osteochondral regeneration processes. KEY POINTS: • DiR-labelling of MSCs shows no toxic side effects or impairment of chondrogenesis. • Fluorescence molecular tomography allows for detection of MSCs for osteochondral defect repair. • FMT-XCT helps to improve evaluation of cell implantation and osteochondral regeneration processes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.967
1.502
6
12
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Cell Labelling ; Fluorescence Molecular Imaging ; Mesenchymal Stem Cells ; Osteochondral ; Rabbit; Ray Computed-tomography; In-vitro; Cartilage Defects; Seeding Density; Model; Differentiation; Proliferation; Chondrocytes; Hydrogels; Tracking
Language english
Publication Year 2017
Prepublished in Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 0938-7994
e-ISSN 1432-1084
Quellenangaben Volume: 27, Issue: 3, Pages: 1105-1113 Article Number: , Supplement: ,
Publisher Springer
Publishing Place New York
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-505500-001
PubMed ID 27329519
Scopus ID 84975299346
Erfassungsdatum 2016-06-27