Müller, W.U.* ; Giussani, A.* ; Rühm, W. ; Lecomte, J.F.* ; Harrison, J.D.* ; Kreuzer, M.* ; Sobotzki, C.* ; Breckow, J.*
Current knowledge on radon risk: Implications for practical radiation protection? Radon workshop, 1/2 December 2015, Bonn, BMUB (Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit; Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety).
Radiat. Environ. Biophys. 55, 267-280 (2016)
ICRP suggested a strategy based on the distinction between a protection approach for dwellings and one for workplaces in the previous recommendations on radon. Now, the Commission recommends an integrated approach for the protection against radon exposure in all buildings irrespective of their purpose and the status of their occupants. The strategy of protection in buildings, implemented through a national action plan, is based on the application of the optimisation principle below a derived reference level in concentration (maximum 300 Bq m(-3)). A problem, however, arises that due to new epidemiological findings and application of dosimetric models, ICRP 115 (Ann ICRP 40, 2010) presents nominal probability coefficients for radon exposure that are approximately by a factor of 2 larger than in the former recommendations of ICRP 65 (Ann ICRP 23, 1993). On the basis of the so-called epidemiological approach and the dosimetric approach, the doubling of risk per unit exposure is represented by a doubling of the dose coefficients, while the risk coefficient of ICRP 103 (2007) remains unchanged. Thus, an identical given radon exposure situation with the new dose coefficients would result in a doubling of dose compared with the former values. This is of serious conceptual implications. A possible solution of this problem was presented during the workshop.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Review
Thesis type
Editors
Keywords
Dose Conversion Factor ; Lung Cancer ; Radon; German Uranium Miners; Lung-cancer; Dose Conversion; Exposure; Rates
Keywords plus
Language
Publication Year
2016
Prepublished in Year
HGF-reported in Year
2016
ISSN (print) / ISBN
0301-634X
e-ISSN
1432-2099
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 55,
Issue: 3,
Pages: 267-280
Article Number: ,
Supplement: ,
Series
Publisher
Springer
Publishing Place
New York
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Research field(s)
Radiation Sciences
PSP Element(s)
G-501100-001
Grants
Copyright
Erfassungsdatum
2016-06-29