Grisk, O.* ; Schlüter, T.* ; Reimer, N.* ; Zimmermann, U.* ; Katsari, E.* ; Plettenburg, O.* ; Löhn, M.* ; Wollert, H.G.* ; Rettig, R.*
    
    
        
The Rho kinase inhibitor SAR407899 potently inhibits endothelin-1-induced constriction of renal resistance arteries.
    
    
        
    
    
        
        J. Hypertens. 30, 980-989 (2012)
    
    
 	
    
	
	  DOI
 DOI
	  PMC
 PMC
		
		
			Open Access Gold as soon as Publ. Version/Full Text is submitted to ZB.
		
     
    
      
      
	
	    OBJECTIVES: Increased renal vascular resistance contributes to the pathogenesis of hypertension. The new Rho kinase (ROCK) inhibitor SAR407899 more potently lowers arterial pressure than the commercially available ROCK inhibitor Y27623. We tested whether ROCK inhibition more effectively reduced agonist-induced vasoconstriction in renal than in nonrenal resistance arteries and if SAR407899 more potently inhibits agonist-induced vasoconstriction than Y27632. METHODS: The effects of the ROCK inhibitors on endothelin-1 (ET-1) induced vasoconstriction were investigated in isolated renal and coronary arteries from lean, normotensive Dark Agouti and obese, type 2 diabetic Zucker diabetic fatty (ZDF) rats as well as in isolated human resistance arteries from the kidney and thymus. Vascular ROCK mRNA abundance was studied by real-time PCR (RT-PCR). RESULTS: ET-1-induced constriction depended more on ROCK in rat and human renal resistance arteries than in rat coronary or human thymic arteries, respectively. SAR407899 was more effective than Y27632 in reducing ET-1-induced vasoconstriction in ZDF rat renal resistance arteries. Maximum ET-1-induced vasoconstriction in SAR407899-treated and Y27632-treated human renal resistance arteries was 23 ± 5 and 48 ± 6% of control values, respectively. Transcripts of both ROCK isoforms were detected in rat and human renal resistance arteries. In human thymic arteries, only the ROCK2 transcript was found. CONCLUSION: ET-1-induced vasoconstriction is more ROCK-dependent in renal than in nonrenal resistance arteries. SAR407899 causes a greater inhibition of ET-1-induced vasoconstriction in renal resistance arteries from ZDF rats and patients than Y27632. The greater efficacy in renal vessels may contribute to the higher antihypertensive potency of SAR407899 compared with Y27632.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2012
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        0
    
 
    
    
        ISSN (print) / ISBN
        0263-6352
    
 
    
        e-ISSN
        1473-5598
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 30,  
	    Issue: 5,  
	    Pages: 980-989 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Lippincott Williams & Wilkins
        
 
        
            Publishing Place
            
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Institute of Medicinal Chemistry (IMC)
    
 
    
        POF-Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-506300-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2012-09-09