PuSH - Publication Server of Helmholtz Zentrum München

Senís, E.* ; Mockenhaupt, S.* ; Rupp, D.* ; Bauer, T.* ; Paramasivam, N.* ; Knapp, B. ; Gronych, J.* ; Grosse, S.D.* ; Windisch, M.P.* ; Schmidt, F.* ; Theis, F.J. ; Eils, R.* ; Lichter, P.* ; Schlesner, M.* ; Bartenschlager, R.* ; Grimm, D.*

TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus.

Nucleic Acids Res. 45:e3 (2017)
Publ. Version/Full Text Research data Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Successful RNAi applications depend on strategies allowing robust and persistent expression of minimal gene silencing triggers without perturbing endogenous gene expression. Here, we propose a novel avenue which is integration of a promoterless shmiRNA, i.e. a shRNA embedded in a micro-RNA (miRNA) scaffold, into an engineered genomic miRNA locus. For proof-of-concept, we used TALE or CRISPR/Cas9 nucleases to site-specifically integrate an anti-hepatitis C virus (HCV) shmiRNA into the liver-specific miR-122/hcr locus in hepatoma cells, with the aim to obtain cellular clones that are genetically protected against HCV infection. Using reporter assays, Northern blotting and qRT-PCR, we confirmed anti-HCV shmiRNA expression as well as miR-122 integrity and functionality in selected cellular progeny. Moreover, we employed a comprehensive battery of PCR, cDNA/miRNA profiling and whole genome sequencing analyses to validate targeted integration of a single shmiRNA molecule at the expected position, and to rule out deleterious effects on the genomes or transcriptomes of the engineered cells. Importantly, a subgenomic HCV replicon and a full-length reporter virus, but not a Dengue virus control, were significantly impaired in the modified cells. Our original combination of DNA engineering and RNAi expression technologies benefits numerous applications, from miRNA, genome and transgenesis research, to human gene therapy.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
10.162
2.657
5
5
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Hepatitis-c Virus; Targeting Apolipoprotein B100; Genome-wide Analysis; In-vivo; Gene-therapy; Hepatocellular-carcinoma; Adenoassociated Viruses; Insertional Mutagenesis; Sequencing Applications; Crispr-cas9 Nucleases
Language
Publication Year 2017
Prepublished in Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 0305-1048
e-ISSN 1362-4962
Quellenangaben Volume: 45, Issue: 1, Pages: , Article Number: e3 Supplement: ,
Publisher Oxford University Press
Publishing Place Oxford
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
PubMed ID 27614072
Scopus ID 85016077878
Erfassungsdatum 2016-09-13