Cornelis, M.C.* ; Kacprowski, T.* ; Menni, C.* ; Gustafsson, S.* ; Pivin, E.* ; Adamski, J. ; Artati, A. ; Eap, C.B.* ; Ehret, G.* ; Friedrich, N.* ; Ganna, A.* ; Guessous, I.* ; Homuth, G.* ; Lind, L.* ; Magnusson, P.K.* ; Mangino, M.* ; Pedersen, N.L.* ; Pietzner, M.* ; Suhre, K. ; Völzke, H.* ; Bochud, M.* ; Spector, T.D.* ; Grabe, H.J.* ; Ingelsson, E.*
     
    
        
Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior.
    
    
        
    
    
        
        Hum. Mol. Genet. 25, 5472-5482 (2016)
    
    
    
      
      
	
	    Caffeine is the most widely consumed psychoactive substance in the world and presents with wide interindividual variation in metabolism. This variation may modify potential adverse or beneficial effects of caffeine on health. We conducted a genome-wide association study (GWAS) of plasma caffeine, paraxanthine, theophylline, theobromine and paraxanthine/caffeine ratio among up to 9,876 individuals of European ancestry from six population-based studies. A single SNP at 6p23 (near CD83) and several SNPs at 7p21 (near AHR), 15q24 (near CYP1A2) and 19q13.2 (near CYP2A6) met GW-significance (P<5×10(-8)) and were associated with one or more metabolites. Variants at 7p21 and 15q24 associated with higher plasma caffeine and lower plasma paraxanthine/caffeine (slow caffeine metabolism) were previously associated with lower coffee and caffeine consumption behavior in GWAS. Variants at 19q13.2 associated with higher plasma paraxanthine/caffeine (slow paraxanthine metabolism) were also associated with lower coffee consumption in the UK Biobank (n=94,343, P<1.0 × (10-6)). Variants at 2p24 (in GCKR), 4q22 (in ABCG2) and 7q11.23 (near POR) that were previously associated with coffee consumption in GWAS were nominally associated with plasma caffeine or its metabolites. Taken together, we have identified genetic factors contributing to variation in caffeine metabolism and confirm an important modulating role of systemic caffeine levels in dietary caffeine consumption behavior. Moreover, candidate genes identified encode proteins with important clinical functions that extend beyond caffeine metabolism.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Cyp1a2 Activity; Genotype Imputation; Cohort Profile; Target Genes; Human-liver; Cyp2a6; Brain; Biotransformation; Polymorphisms; Theophylline
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        
    
 
    
        Publication Year
        2016
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2016
    
 
    
    
        ISSN (print) / ISBN
        0964-6906
    
 
    
        e-ISSN
        1460-2083
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 25,  
	    Issue: 24,  
	    Pages: 5472-5482 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Oxford University Press
        
 
        
            Publishing Place
            Oxford
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30201 - Metabolic Health
30505 - New Technologies for Biomedical Discoveries
    
 
    
        Research field(s)
        Genetics and Epidemiology
Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-505600-003
G-503700-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2016-10-07