PuSH - Publication Server of Helmholtz Zentrum München

Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures.

Neurophotonics 4:011007 (2017)
Publ. Version/Full Text DOI PMC
Open Access Gold
Visualization of whole brain activity during epileptic seizures is essential for both fundamental research into the disease mechanisms and the development of efficient treatment strategies. It has been previously discussed that pathological synchronization originating from cortical areas may reinforce backpropagating signaling from the thalamic neurons, leading to massive seizures through enhancement of high frequency neural activity in the thalamocortical loop. However, the study of deep brain neural activity is challenging with the existing functional neuroimaging methods due to lack of adequate spatiotemporal resolution or otherwise insufficient penetration into subcortical areas. To investigate the role of thalamocortical activity during epileptic seizures, we developed a new functional neuroimaging framework based on spatiotemporal correlation of volumetric optoacoustic hemodynamic responses with the concurrent electroencephalogram recordings and anatomical brain landmarks. The method is shown to be capable of accurate three-dimensional mapping of the onset, spread, and termination of the epileptiform events in a 4-aminopyridine acute model of focal epilepsy. Our study is the first to demonstrate entirely noninvasive real-time visualization of synchronized epileptic foci in the whole mouse brain, including the neocortex and subcortical structures, thus opening new vistas in systematic studies toward the understanding of brain signaling and the origins of neurological disorders.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.740
0.651
41
48
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords epileptic seizures; functional brain imaging; optoacoustic tomography; photoacoustics; thalamocortical loop; hemodynamic response function; 4-aminopyridine; Optoacoustic Tomography; In-vivo; Mouse-brain; Photoacoustic Microscopy; Neocortical Seizures; Animal-models; Resolution; Thalamus; Vasculature; Discharges
Language english
Publication Year 2017
Prepublished in Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 2329-4248
e-ISSN 2329-423X
Journal Neurophotonics
Quellenangaben Volume: 4, Issue: 1, Pages: , Article Number: 011007 Supplement: ,
Publisher SPIE
Publishing Place Bellingham, Wash.
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-505590-001
Scopus ID 84991098699
PubMed ID 27725948
Erfassungsdatum 2016-10-12