Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.
Development 143, 4279-4287 (2016)
The zebrafish is a well-established model organism to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive thereby creating additional tissue damage and potential infection sites, or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell-death-inducing compounds. We have recently established a novel inducible genetic cell ablation system that is based on Tamoxifen-inducible Caspase8-activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here we prove its suitability in vivo by the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish, which coexpress the inducible Caspase and a fluorescent reporter to monitor ablation processes. Incubation of larvae in Tamoxifen for 8 hrs activated endogenous Caspase3 and cell death, while incubation for 16 hrs led to the nearly complete loss of PCs by apoptosis. Using live confocal imaging, we observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of Apoptosis Through Targeted Activation of Caspase by Tamoxifen (ATTAC(TM)) further expands the repertoire of genetic tools in zebrafish for conditional interrogation of cellular functions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
zebrafish, cerebellum, Purkinje cells, cell ablation, apoptosis, inducible Caspase; Assisted Light Inactivation; In-vivo; Fluorescent Protein; Danio-rerio; Animal-models; Cell Ablation; Rhombic Lip; Nitroreductase; Microglia; Expression
Keywords plus
Language
english
Publication Year
2016
Prepublished in Year
HGF-reported in Year
2016
ISSN (print) / ISBN
0950-1991
e-ISSN
1477-9129
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 143,
Issue: 22,
Pages: 4279-4287
Article Number: ,
Supplement: ,
Series
Publisher
Company of Biologists
Publishing Place
Cambridge
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30204 - Cell Programming and Repair
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-500500-001
Grants
Copyright
Erfassungsdatum
2016-10-18