PuSH - Publication Server of Helmholtz Zentrum München

Stricker, S.H. ; Köferle, A.* ; Beck, S.*

From profiles to function in epigenomics.

Nat. Rev. Genet. 18, 51-66 (2017)
Publ. Version/Full Text Postprint Research data DOI
Open Access Green
Myriads of epigenomic features have been comprehensively profiled in health and disease across cell types, tissues and individuals. Although current epigenomic approaches can infer function for chromatin marks through correlation, it remains challenging to establish which marks actually have causative roles in gene regulation and other processes. After revisiting how classical approaches have addressed this question in the past, we discuss the current state of epigenomic profiling and how functional information can be indirectly inferred. We also present new approaches that promise definitive functional answers, which are collectively referred to as 'epigenome editing'. In particular, we explore CRISPR-based technologies for single-locus and multi-locus manipulation. Finally, we discuss which level of function can be achieved with each approach and introduce emerging strategies for high-throughput progression from profiles to function.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
40.282
7.846
139
169
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Review
Keywords Chromatin analysis; CRISPR-Cas systems; DNA methylation; Epigenetics; Epigenomics; Gene regulation; Genetic engineering; Histone post-translational modifications; Targeted Dna Methylation; De-novo Methylation; Epigenetic Regulation; Gene-expression; Transcriptional Regulation; Histone Deacetylase-1; Mammalian Development; Cell Differentiation; Early Embryogenesis; Lysine Methylation
Language english
Publication Year 2017
Prepublished in Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 1471-0056
e-ISSN 1471-0064
Quellenangaben Volume: 18, Issue: 1, Pages: 51-66 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
POF-Topic(s) 30204 - Cell Programming and Repair
Research field(s) Stem Cell and Neuroscience
PSP Element(s) G-500800-001
Erfassungsdatum 2016-11-22