PuSH - Publication Server of Helmholtz Zentrum München

Zierer, B.K.* ; Rübbelke, M. ; Tippel, F.* ; Madl, T. ; Schopf, F.H.* ; Rutz, D.A.* ; Richter, K.* ; Sattler, M. ; Buchner, J.*

Importance of cycle timing for the function of the molecular chaperone Hsp90.

Nat. Struct. Mol. Biol. 23, 1020-1028 (2016)
Publ. Version/Full Text Postprint Research data DOI
Open Access Gold
Hsp90 couples ATP hydrolysis to large conformational changes essential for activation of client proteins. The structural transitions involve dimerization of the N-terminal domains and formation of 'closed states' involving the N-terminal and middle domains. Here, we used Hsp90 mutants that modulate ATPase activity and biological function as probes to address the importance of conformational cycling for Hsp90 activity. We found no correlation between the speed of ATP turnover and the in vivo activity of Hsp90: some mutants with almost normal ATPase activity were lethal, and some mutants with lower or undetectable ATPase activity were viable. Our analysis showed that it is crucial for Hsp90 to attain and spend time in certain conformational states: a certain dwell time in open states is required for optimal processing of client proteins, whereas a prolonged population of closed states has negative effects. Thus, the timing of conformational transitions is crucial for Hsp90 function and not cycle speed.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
13.338
2.348
44
51
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Heat-shock-protein; Escherichia-coli Hsp90; Atp Hydrolysis; In-vivo; Steroid-receptor; Client Protein; Mechanism; Nucleotide; Binding; Kinase
Language
Publication Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 1545-9993
e-ISSN 1545-9985
Quellenangaben Volume: 23, Issue: 11, Pages: 1020-1028 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place New York, NY
Reviewing status Peer reviewed
POF-Topic(s) 30505 - New Technologies for Biomedical Discoveries
30203 - Molecular Targets and Therapies
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-552800-001
G-503000-001
Erfassungsdatum 2016-11-24