Open Access Green as soon as Postprint is submitted to ZB.
Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments.
Biol. Fertil. Soils 53, 9-22 (2017)
Our understanding of the interactions between minerals, organic matter, and microorganisms at so-called biogeochemical interfaces in soil is still hampered by the inherent complexity of these systems. Artificial soil maturation experiments can help to bridge a gap in complexity between simple abiotic sorption experiments and larger-scale field experiments. By controlling other soil-forming factors, the effect of a particular variable can be identified in a simplified system. Here, we review the findings of a series of artificial soil incubation experiments with the aim of revealing general trends and conclusions. The artificial soils were designed to determine the effect of mineral composition and charcoal presence on the development of abiotic and biotic soil properties during maturation. In particular, the development of soil aggregates, organic matter (OM) composition and turnover, sorption properties, and the establishment of microbial community composition and function were considered. The main objectives of the research were to determine (1) how surface properties and sorption of chemicals modify biogeochemical interfaces; (2) how much time is required to form aggregates from mixtures of pure minerals, OM, and a microbial inoculum; and (3) how the presence of different mineral and charcoal surfaces affects aggregation, OM turnover, and the development of microbial community composition.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Biogeochemical Interfaces ; Experimental Pedology ; Interdisciplinary Soil Science ; Secondary Phyllosilicates ; Soil Microbial Ecology ; Soil Organic Matter; Particle-size Fractions; Microbial Communities; Clay-minerals; Carbon Stabilization; Charcoal Determine; Glacier Forefield; Porous-media; Metal-oxides; Litter; Decomposition
ISSN (print) / ISBN
0178-2762
e-ISSN
1432-0789
Journal
Biology and Fertility of Soils
Quellenangaben
Volume: 53,
Issue: 1,
Pages: 9-22
Publisher
Springer
Publishing Place
New York
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Research Unit Comparative Microbiome Analysis (COMI)