PuSH - Publication Server of Helmholtz Zentrum München

Wuttke, S.* ; Zimpel, A.* ; Bein, T.* ; Braig, S.* ; Stoiber, K.* ; Vollmar, A.* ; Müller, D.* ; Haastert-Talini, K.* ; Schaeske, J.* ; Stiesch, M.* ; Zahn, G.* ; Mohmeyer, A.* ; Behrens, P.* ; Eickelberg, O. ; Bölükbas, D.A. ; Meiners, S.

Validating metal-organic framework nanoparticles for their nanosafety in diverse biomedical applications.

Adv. Healthc. Mater. 6:1600818 (2016)
Postprint DOI
Open Access Green
Metal-organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood-mediated and local lung-specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords metal-organic frameworks; nanoparticles; nanoparticles; nanosafety; drug delivery; nanomedicine; Peripheral-nerve Regeneration; Porous Coordination Polymers; Polysialic Acid; Drug-delivery; Ultrafine Particles; Mof Nanoparticles; Silica Coatings; Cancer-cells; Middle-ear; Nanotechnology
ISSN (print) / ISBN 2192-2640
e-ISSN 2192-2659
Quellenangaben Volume: 6, Issue: 2, Pages: , Article Number: 1600818 Supplement: ,
Publisher Wiley
Publishing Place Weinheim
Non-patent literature Publications
Reviewing status Peer reviewed