PuSH - Publication Server of Helmholtz Zentrum München

Hofmann, K.* ; Fiedler, S.* ; Vierkotten, S. ; Weber, J.* ; Klee, S. ; Jia, J. ; Zwickenpflug, W.* ; Flockerzi, V.* ; Storch, U.* ; Yildirim, A.Ö. ; Gudermann, T.* ; Königshoff, M. ; Dietrich, A.*

Classical transient receptor potential 6 (TRPC6) channels support myofibroblast differentiation and development of experimental pulmonary fibrosis.

Biochim. Biophys. Acta 1863, 560-568 (2017)
Publ. Version/Full Text DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Pulmonary fibrosis (PF) is a chronic progressive lung disease without effective medical treatment options leading to respiratory failure and death within 3–5 years of diagnosis. The pathological process of PF is driven by aberrant wound-healing involving fibroblasts and myofibroblasts differentiated by secreted profibrotic transforming growth factor β (TGF-β1). Classical transient receptor potential 6 (TRPC6), a Na+- and Ca2 +-permeable cation channel, is able to promote myofibroblast conversion of primary rat cardiac and human dermal fibroblasts and TRPC6-deficiency impaired wound healing after injury. To study a potential role of TRPC6 in the development of PF we analyzed lung function, gene and protein expression in wild-type (WT) and TRPC6-deficient (TRPC6 −/−) lungs utilizing a bleomycin-induced PF-model. Fibrotic WT-mice showed a significant higher death rate while bleomycin-treated TRPC6-deficient mice were partly protected from fibrosis as a consequence of a lower production of collagen and an almost normal function of the respiratory system (reduced resistance and elastance compared to fibrotic WT-mice). On a molecular level TGF-β1 induced TRPC6 up-regulation, increased Ca2 + influx and nuclear NFAT localization in WT primary murine lung fibroblasts (PMLFs) resulting in higher stress fiber formation and accelerated contraction rates as compared to treated TRPC6-deficient fibroblasts. Therefore, we conclude that TRPC6 is an important determinant for TGF-β1-induced myofibroblast differentiation during fibrosis and specific channel inhibitors might be beneficial in a future treatment of PF.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.018
1.351
23
30
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Cell Contraction ; Myofibroblast Differentiation ; Primary Murine Lung Fibroblasts ; Pulmonary Fibrosis ; Tgf-β1 ; Trpc6; Cation Channel; Mesenchymal Transition; Extracellular-matrix; Lung Fibrosis; G-protein; In-vivo; Activation; Cells; Disease; Mice
Language english
Publication Year 2017
Prepublished in Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 0006-3002
Quellenangaben Volume: 1863, Issue: 2, Pages: 560-568 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Amsterdam
POF-Topic(s) 30503 - Chronic Diseases of the Lung and Allergies
30202 - Environmental Health
Research field(s) Lung Research
PSP Element(s) G-551800-001
G-505000-007
G-503100-001
Scopus ID 85003811129
PubMed ID 27932059
Erfassungsdatum 2016-12-22