Regan, K.* ; Stempfhuber, B. ; Schloter, M. ; Rasche, F.* ; Prati, D.* ; Philippot, L.* ; Boeddinghaus, R.S.* ; Kandeler, E.* ; Marhan, S.*
     
    
        
Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil.
    
    
        
    
    
        
        Soil Biol. Biochem. 109, 214-226 (2017)
    
    
         Research data
 Research data
 	
    
	
	  DOI
 DOI
	
		
		
			Open Access Green as soon as Postprint is submitted to ZB.
		
     
    
      
      
	
	    The microbial groups of nitrogen fixers, ammonia oxidizers, and denitrifiers largely drive the inorganic nitrogen cycle in temperate terrestrial ecosystems. Their spatial and temporal dynamics, however, vary depending on the studied scale. The present study aimed to fill a knowledge gap by providing an explicit picture of spatial and temporal dynamics of a subset of these soil microorganisms at the plot scale. We selected an unfertilized perennial grassland, where nitrogen cycling is considered to be efficient and tightly coupled to plant growth. At six times over one growing season 60 soil samples were taken from a 10 m × 10 m area and abundances of marker genes for total archaea and bacteria (16S rRNA), nitrogen fixing bacteria (nifH), ammonia oxidizing archaea (amoA AOA) and bacteria (amoA AOB), and denitrifying bacteria (nirS, . nirK and . nosZ) were determined by qPCR. Potential nitrification activity (PNA) and denitrifying enzyme activity (DEA) were determined. Seasonal changes in abundance patterns of marker genes were detected, and were associated with changes in substrate availability associated with plant growth stages. Potential nitrification and denitrification enzyme activities were strongly spatially structured at the studied scale, corresponding to periods of rapid plant growth, June and October, and their spatial distributions were similar, providing visual evidence of highly localized spatial and temporal conditions at this scale. Temporal variability in the N-cycling communities versus the stability of their respective potential activities provided evidence of both short-lived temporal niche partitioning and a degree of microbial functional redundancy. Our results indicate that in an unfertilized grassland, at the meter scale, abundances of microbial N-cycling organisms can exhibit transient changes, while nitrogen cycling processes remain stable.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Ammonia-oxidation ; Biogeography ; Denitrification ; Niche-partitioning ; Potential Enzyme Activity ; Spatio-temporal Variability; Ammonia-oxidizing Bacteria; Land-use Types; Community Structure; Agricultural Field; Nitrite Reductase; Plant Diversity; Potential Nitrification; Upland Grassland; Ecology; Abundance
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2017
    
 
    
        Prepublished in Year
        2016
    
 
    
        HGF-reported in Year
        2016
    
 
    
    
        ISSN (print) / ISBN
        0038-0717
    
 
    
        e-ISSN
        1879-3428
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 109,  
	    Issue: ,  
	    Pages: 214-226 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Elsevier
        
 
        
            Publishing Place
            Amsterdam
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30202 - Environmental Health
    
 
    
        Research field(s)
        Environmental Sciences
    
 
    
        PSP Element(s)
        G-504700-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2016-12-31