PuSH - Publication Server of Helmholtz Zentrum München

Pfaff, D.H.* ; Fleming, T.* ; Nawroth, P.P. ; Teleman, A.A.*

Evidence against a role for the parkinsonism-associated protein DJ-1 in methylglyoxal detoxification.

J. Biol. Chem. 292, 685-690 (2017)
Publ. Version/Full Text DOI PMC
Free by publisher
Open Access Green as soon as Postprint is submitted to ZB.
Methylglyoxal (MG) is a reactive metabolite that forms adducts on cysteine, lysine and arginine residues of proteins, thereby affecting their function. Methylglyoxal is detoxified by the Glyoxalase system, consisting of two enzymes, Glo1 and Glo2, that act sequentially to convert MG into D-lactate. Recently, the Parkinsonism-associated protein DJ-1 was described in vitro to have glyoxalase activity, thereby detoxifying the MG metabolite, or deglycase activity, thereby removing the adduct formed by MG on proteins. Since Drosophila is an established model system to study signaling, neurodegeneration, and metabolic regulation in vivo, we asked whether DJ-1 contributes to MG detoxification in vivo. Using both DJ-1 knockdown in Drosophila cells in culture, and DJ-1 β knock-out flies, we could detect no contribution of DJ-1 to survival to MG challenge or to accumulation of MG protein adducts. Furthermore, we provide data suggesting that the previously reported deglycation activity of DJ- 1 can be ascribed to a TRIS buffer artifact.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Drosophila; development; glucose metabolism; glycation; metabolism
ISSN (print) / ISBN 0021-9258
e-ISSN 1083-351X
Quellenangaben Volume: 292, Issue: 2, Pages: 685-690 Article Number: , Supplement: ,
Publisher American Society for Biochemistry and Molecular Biology
Non-patent literature Publications
Reviewing status Peer reviewed