Imaging of post-embryonic stage model-organisms at high resolution using multi orientation optoacoustic mesoscopy.
    
    
        
    
    
        
        Proc. SPIE 10064:100640Z (2017)
    
    
    
      
      
	
	    Model organisms such as zebrafish play an important role for developmental biologists and experimental geneticists. Still, as they grow into their post-embryonic stage of development it becomes more and more difficult to image them because of high light scattering inside biological tissue. Optoacoustic mesoscopy based on spherically focused, high frequency, ultrasound detectors offers an alternative, where it relies on the focusing capabilities of the ultrasound detectors in generating the image rather than on the focusing of light. Nonetheless, because of the limited numerical aperture the resolution is not isotropic, and many structures, especially elongated ones, such as blood vessels and other organs, are either invisible, or not clearly identifiable on the final image. Herein, based on high frequency ultrasound detectors at 100 MHz and 50 MHz we introduce multi orientation (view) optoacoustic mesoscopy. We collect a rich amount of signals from multiple directions and combine them using a weighted sum in the Fourier domain and a Wiener deconvolution into a single high resolution three-dimensional image. The new system achieves isotropic resolutions on the order of 10 μm in-plane, 40 μm axially, and SNR enhancement of 15 dB compared to the single orientation case. To showcase the system we imaged a juvenile zebrafish ex vivo, which is too large to image using optical microscopic techniques, the reconstructed images show unprecedented performance in terms of SNR, resolution, and clarity of the observed structures. Using the system we see the inner organs of the zebrafish, the pigmentation, and the vessels with unprecedented clarity.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Optoacoustics, beam-forming, mesoscopy, microscopy, Multiview
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2017
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2017
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        Photons Plus Ultrasound: Imaging and Sensing 2017
    
 
	
        Conference Date
        28 January - 2 February 2017
    
     
	
        Conference Location
        San Francisco, California, United States
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 10064,  
	    Issue: ,  
	    Pages: ,  
	    Article Number: 100640Z 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            SPIE
        
 
        
            Publishing Place
            
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
30204 - Cell Programming and Repair
    
 
    
        Research field(s)
        Enabling and Novel Technologies
Stem Cell and Neuroscience
    
 
    
        PSP Element(s)
        G-505500-001
G-505590-001
G-500100-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2017-03-20