Image reconstruction in cross-sectional optoacoustic tomography based on non-negative constrained model-based inversion.
    
    
        
    
    
        
        Proc. SPIE 9539:953919 (2015)
    
    
    
      
      
	
	    In optoacoustic tomography, images representing the light absorption distribution are reconstructed from the measured acoustic pressure waves at several locations around the imaged sample. Most reconstruction algorithms typically yield negative absorption values due to modelling inaccuracies and imperfect measurement conditions. Those negative optical absorption values have no physical meaning and their presence hinders image quantification and interpretation of biological information. We investigate herein the performance of optimization methods that impose non-negative constraints in model-based optoacoustic inversion. Specifically, we analyze the effects of the non-negative restrictions on image quality and accuracy as compared to the unconstrained approach. An efficient algorithm based on the projected quasi-Newton scheme and the limitedmemory Broyden-Fletcher-Goldfarb-Shannon method is used for the non-negative constrained inversion. We showcase that imposing non-negative constraints in model-based reconstruction leads to a quality increase in cross-sectional tomographic optoacoustic images.CCC.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Model-based Inversion ; Non-negative Constrained Least Squares ; Optoacoustic Tomography ; Photoacoustic Tomography
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2015
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2015
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        Opto-Acoustic Methods and Applications in Biophotonics II
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        22-23 June 2015
    
     
	
        Conference Location
        München
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 9539,  
	    Issue: ,  
	    Pages: ,  
	    Article Number: 953919 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            SPIE
        
 
        
            Publishing Place
            
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-505500-001
G-505590-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2017-06-01