Nemec, C.M.* ; Yang, F.* ; Gilmore, J.M.* ; Hintermair, C. ; Ho, Y.H.* ; Tseng, S.C.* ; Heidemann, M. ; Zhang, Y.* ; Florens, L.* ; Gasch, A.P.* ; Eick, D. ; Washburn, M.P.* ; Varani, G.* ; Ansari, A.Z.*
     
    
        
         Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner.
        Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner.
     
    
        
    
    
        
        Proc. Natl. Acad. Sci. U.S.A. 114, E3944-E3953 (2017)
    
    
    
      
      
	
	    The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of Y1S2P3T4S5P6S7 heptapeptide repeats of the CTD engage specific "readers." Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes. Here, we identify a role for phospho-Thr4 in transcription termination at noncoding small nucleolar RNA (snoRNA) genes. Quantitative proteomics reveals an interactome of known readers as well as protein complexes that were not known to rely on Thr4 for association with Pol II. The data indicate a key role for Thr4 in engaging the machinery used for transcription elongation and termination. We focus on Rtt103, a protein that binds phospho-Ser2 and phospho-Thr4 marks and facilitates transcription termination at protein-coding genes. To elucidate how Rtt103 engages two distinct CTD modifications that are differentially enriched at noncoding genes, we relied on NMR analysis of Rtt103 in complex with phospho-Thr4- or phospho-Ser2-bearing CTD peptides. The structural data reveal that Rtt103 interacts with phospho-Thr4 in a manner analogous to its interaction with phospho-Ser2-modified CTD. The same set of hydrogen bonds involving either the oxygen on phospho-Thr4 and the hydroxyl on Ser2, or the phosphate on Ser2 and the Thr4 hydroxyl, can be formed by rotation of an arginine side chain, leaving the intermolecular interface otherwise unperturbed. This economy of design enables Rtt103 to engage Pol II at distinct sets of genes with differentially enriched CTD marks.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Ctd Code ; Ctd Interactome ; Nmr ; Noncoding Rna ; Phosphothreonine; Histone Messenger-rna; Transcription Termination; Paf1 Complex; Ctd Code; Saccharomyces-cerevisiae; Domain Phosphorylation; 3'-end Formation; Budding Yeast; Fission Yeast; Elongation
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2017
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2017
    
 
    
    
        ISSN (print) / ISBN
        0027-8424
    
 
    
        e-ISSN
        1091-6490
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 114,  
	    Issue: 20,  
	    Pages: E3944-E3953 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            National Academy of Sciences
        
 
        
            Publishing Place
            Washington
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Helmholtz Diabetes Center
    
 
    
        PSP Element(s)
        G-502890-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2017-07-05