PuSH - Publication Server of Helmholtz Zentrum München

Wavefront shaping based on three-dimensional optoacoustic feedback.

Proc. SPIE 9540:95400K (2015)
DOI
Open Access Green as soon as Postprint is submitted to ZB.
Wavefront shaping techniques have recently evolved as a promising tool to control the light distribution in optically-scattering media. These techniques are based on spatially-modulating the phase of an incident light beam to create positive interference (focusing) at specific locations in the speckle pattern of the scattered wavefield. The optimum phase distribution (mask) of the spatial light modulator that allows focusing at the target location(s) is determined iteratively by monitoring the light intensity at such target. In this regard, optoacoustic (photoacoustic) imaging may provide the convenient advantage of simultaneous feedback information on light distribution in an entire region of interest. Herein, we showcase that volumetric optoacoustic images can effectively be used as a feedback mechanism in an iterative optimization algorithm allowing controlling the light distribution after propagation through a scattering sample. Experiments performed with absorbing microparticles distributed in a three-dimensional region showcase the feasibility of enhancing the light intensity at specific points. The advantages provided by optoacoustic imaging in terms of spatial and temporal resolution anticipate new capabilities of wavefront shaping techniques in biomedical optics.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Light Focusing ; Light Scattering ; Three-dimensional Optoacoustic Imaging ; Wavefront Shaping
ISSN (print) / ISBN 0277-786X
e-ISSN 1996-756X
Conference Title Novel Biophotonics Techniques and Applications III
Conference Date 21 June 2015
Conference Location Munich, Germany
Quellenangaben Volume: 9540, Issue: , Pages: , Article Number: 95400K Supplement: ,
Publisher SPIE
Non-patent literature Publications
Reviewing status Peer reviewed