Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas.
Mol. Metab. 6, 974-990 (2017)
Background: Diabetes mellitus is characterized by loss or dysfunction of insulin-producing β-cells in the pancreas, resulting in failure of blood glucose regulation and devastating secondary complications. Thus, β-cells are currently the prime target for cell-replacement and regenerative therapy. Triggering endogenous repair is a promising strategy to restore β-cell mass and normoglycemia in diabetic patients. Potential strategies include targeting specific β-cell subpopulations to increase proliferation or maturation. Alternatively, transdifferentiation of pancreatic islet cells (e.g. α- or δ-cells), extra-islet cells (acinar and ductal cells), hepatocytes, or intestinal cells into insulin-producing cells might improve glycemic control. To this end, it is crucial to systematically characterize and unravel the transcriptional program of all pancreatic cell types at the molecular level in homeostasis and disease. Furthermore, it is necessary to better determine the underlying mechanisms of β-cell maturation, maintenance, and dysfunction in diabetes, to identify and molecularly profile endocrine subpopulations with regenerative potential, and to translate the findings from mice to man. Recent approaches in single-cell biology started to illuminate heterogeneity and plasticity in the pancreas that might be targeted for β-cell regeneration in diabetic patients. Scope of review: This review discusses recent literature on single-cell analysis including single-cell RNA sequencing, single-cell mass cytometry, and flow cytometry of pancreatic cell types in the context of mechanisms of endogenous β-cell regeneration. We discuss new findings on the regulation of postnatal β-cell proliferation and maturation. We highlight how single-cell analysis recapitulates described principles of functional β-cell heterogeneity in animal models and adds new knowledge on the extent of β-cell heterogeneity in humans as well as its role in homeostasis and disease. Furthermore, we summarize the findings on cell subpopulations with regenerative potential that might enable the formation of new β-cells in diseased state. Finally, we review new data on the transcriptional program and function of rare pancreatic cell types and their implication in diabetes. Major conclusion: Novel, single-cell technologies offer high molecular resolution of cellular heterogeneity within the pancreas and provide information on processes and factors that govern β-cell homeostasis, proliferation, and maturation. Eventually, these technologies might lead to the characterization of cells with regenerative potential and unravel disease-associated changes in gene expression to identify cellular and molecular targets for therapy.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Dedifferentiation ; Diabetes ; Endocrine Cells ; Maturation ; Regeneration ; Single-cell Analysis ; Subpopulations ; Transdifferentiation ; β-cell Heterogeneity; Beta-like Cells; Unfolded Protein Response; Human Endocrine Pancreas; Adult-mouse Pancreas; In-vivo; Insulin-secretion; Progenitor Cells; Stem-cells; Alpha Cell; Exocrine Cells
Keywords plus
Language
english
Publication Year
2017
Prepublished in Year
HGF-reported in Year
2017
ISSN (print) / ISBN
2212-8778
e-ISSN
2212-8778
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 6,
Issue: 9,
Pages: 974-990
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Amsterdam
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30201 - Metabolic Health
30205 - Bioengineering and Digital Health
Research field(s)
Helmholtz Diabetes Center
Enabling and Novel Technologies
PSP Element(s)
G-502300-001
G-503800-001
Grants
Copyright
Erfassungsdatum
2017-09-08