Brustel, J.* ; Kirstein, N. ; Izard, F.* ; Grimaud, C.* ; Prorok, P.* ; Cayrou, C.* ; Schotta, G.* ; Abdelsamie, A.S. ; Déjardin, J.* ; Méchali, M.* ; Baldacci, G.* ; Sardet, C.* ; Cadoret, J.C.* ; Schepers, A. ; Julien, E.*
Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication.
EMBO J. 36, 2726-2741 (2017)
Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila, partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin per se, but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Dna Replication Origins ; Heterochromatin ; Histone H4k20 Methylation; H4 Lysine 20; Dna-replication; Cell-cycle; Methyltransferase Pr-set7; Recognition Complex; Genome Replication; Start Sites; S-phase; Chromatin; Organization
Keywords plus
Language
english
Publication Year
2017
Prepublished in Year
HGF-reported in Year
2017
ISSN (print) / ISBN
0261-4189
e-ISSN
1460-2075
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 36,
Issue: 18,
Pages: 2726-2741
Article Number: ,
Supplement: ,
Series
Publisher
Wiley
Publishing Place
Heidelberg, Germany
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Immune Response and Infection
PSP Element(s)
G-501500-004
Grants
Copyright
Erfassungsdatum
2017-09-05