PuSH - Publication Server of Helmholtz Zentrum München

Link, E.K.* ; Brandmüller, C.* ; Suezer, Y.* ; Ameres, S. ; Volz, A.* ; Moosmann, A. ; Sutter, G.* ; Lehmann, M.H.*

A synthetic human cytomegalovirus pp65-IE1 fusion antigen efficiently induces and expands virus specific T cells.

Vaccine 35, 5131-5139 (2017)
Research data DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Infection with human cytomegalovirus (HCMV) can cause severe complications in newborns and immunocompromised patients, and a prophylactic or therapeutic vaccine against HCMV is not available. Here, we generated a HCMV vaccine candidate fulfilling the regulatory requirements for GMP-compliant production and clinical testing. A novel synthetic fusion gene consisting of the coding sequences of HCMV pp65 and IE1 having a deleted nuclear localization sequence and STAT2 binding domain was introduced into the genome of the attenuated vaccinia virus strain MVA. This recombinant MVA, MVA-syn65_IE1, allowed for the production of a stable ∼120kDa syn65_IE1 fusion protein upon tissue culture infection. MVA-syn65_IE1 infected CD40-activated B cells activated and expanded pp65- and IE1-specific T cells derived from HCMV-seropositive donors to at least equal levels as control recombinant MVA expressing single genes for pp65 or IE1. Additionally, we show that MVA-syn65_IE1 induced HCMV pp65- and IE1-epitope specific T cells in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Thus, MVA-syn65_IE1 represents a promising vaccine candidate against HCMV and constitutes a basis for the generation of a multivalent vaccine targeting relevant pathogens in immunocompromised patients.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.235
1.155
8
7
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Human Herpesvirus-5, Hhv-5 ; Modified Vaccinia Virus Ankara ; Poxvirus ; Vector Vaccine; Recombinant Vaccinia Virus; Allogeneic Bone-marrow; Attenuated Mva Strain; Adoptive Immunotherapy; Host-range; In-vitro; Cellular-immunity; Ie1-pp65 Protein; Influenza-virus; Human Cmv
Language english
Publication Year 2017
HGF-reported in Year 2017
ISSN (print) / ISBN 0264-410X
e-ISSN 1358-8745
Journal Vaccine
Quellenangaben Volume: 35, Issue: 8, Pages: 5131-5139 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Oxford
Reviewing status Peer reviewed
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Immune Response and Infection
PSP Element(s) G-501500-001
Scopus ID 85033460289
PubMed ID 28818566
Erfassungsdatum 2017-09-18