Open Access Green as soon as Postprint is submitted to ZB.
Eye development.
Curr. Top. Dev. Biol. 90, 343-386 (2010)
The vertebrate eye comprises tissues from different embryonic origins: the lens and the cornea are derived from the surface ectoderm, but the retina and the epithelial layers of the iris and ciliary body are from the anterior neural plate. The timely action of transcription factors and inductive signals ensure the correct development of the different eye components. Establishing the genetic basis of eye defects in zebrafishes, mouse, and human has been an important tool for the detailed analysis of this complex process. A single eye field forms centrally within the anterior neural plate during gastrulation; it is characterized on the molecular level by the expression of “eye-field transcription factors. The single eye field is separated into two, forming the optic vesicle and later (under influence of the lens placode) the optic cup. The lens develops from the lens placode (surface ectoderm) under influence of the underlying optic vesicle. Pax6 acts in this phase as master control gene, and genes encoding cytoskeletal proteins, structural proteins, or membrane proteins become activated. The cornea forms from the surface ectoderm, and cells from the periocular mesenchyme migrate into the cornea giving rise for the future cornea stroma. Similarly, the iris and ciliary body form from the optic cup. The outer layer of the optic cup becomes the retinal pigmented epithelium, and the main part of the inner layer of the optic cup forms later the neural retina with six different types of cells including the photoreceptors. The retinal ganglion cells grow toward the optic stalk forming the optic nerve. This review describes the major molecular players and cellular processes during eye development as they are known from frogs, zebrafish, chick, and mice-showing also differences among species and missing links for future research. The relevance to human disorders is one of the major aspects covered throughout the review.
Impact Factor
Scopus SNIP
Scopus
Cited By
Cited By
Altmetric
5.753
1.460
152
Annotations
Special Publikation
Hide on homepage
Publication type
Article: Journal article
Document type
Review
Keywords
Eye development; Developmental genetics; Zebrafish; Xenopus; Mouse; Human; Cornea; Lens; Retina
Language
english
Publication Year
2010
HGF-reported in Year
2010
ISSN (print) / ISBN
0070-2153
e-ISSN
1557-8933
Quellenangaben
Volume: 90,
Pages: 343-386
Publisher
Elsevier
Reviewing status
Peer reviewed
Institute(s)
Institute of Developmental Genetics (IDG)
POF-Topic(s)
30204 - Cell Programming and Repair
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-500500-002
Scopus ID
77955335646
Erfassungsdatum
2010-11-15