Schulte, E.* ; Kondofersky, I. ; Budde, M.* ; Adorjan, K.* ; Aldinger, F.* ; Anderson-Schmidt, H.* ; Andlauer, T.F.* ; Gade, K.* ; Heilbronner, U.* ; Kalman, J.* ; Papiol, S.* ; Theis, F.J. ; Falkai, P.* ; Müller, N.S. ; Schulze, T.G.*
     
    
        
Polygenic burden analysis of longitudinal clusters of psychopathological features in a cross-diagnostic group of individuals with severe mental illness.
    
    
        
    
    
        
        Eur. Neuropsychopharmacol. 27, 3, S401-S402 (2017)
    
    
 	
    
	
	  DOI
 DOI
	
		
		
			Open Access Green as soon as Postprint is submitted to ZB.
		
     
    
      
      
	
	    Background Bipolar disorder (BD), schizophrenia (SZ) and schizoaffective disorder (SZA) can be disabling disorders associated with severe psychiatric symptomatology. Individual psychopathological features often overlap between these diagnostic groups and their severity can vary widely. More severe psychopathological features are generally associated with a less favorable outcome. Further, all three diseases are common complex genetic disorders with a polygenic genetic architecture in the majority of cases. The inherent heterogeneity with regard to disease severity has posed a significant challenge to both the study of the underlying disease mechanism and the clinical management. Therefore, stratification of cases into more homogeneous subgroups across diagnoses using both longitudinal clusters derived from psychometric data and genetic information could provide a means to identify individuals with higher risk for severe illness, mandating earlier and intensified clinical intervention. Methods Individuals included herein partake in an ongoing multisite cohort study across Germany and Austria (www.kfo241.de; www.PsyCourse.de). Participants were characterized at 4 time points over an 18-months period using a comprehensive phenotyping battery. The subsample used here totals 198 participants (46.9±12.4 yrs; 46% female) with DSM-IV diagnoses of SZ, SZA or BD. Blood DNA samples were genotyped using Illumina’s Infinium PsychArray and imputed using the 1000 genomes. SZ-PRS were calculated using PLINK 1.07. Effect sizes and p-values were determined with the PGC2 SZ summary results as discovery sample. A set of 67 longitudinally measured variables derived from the Positive and Negative Syndrome Scale (PANSS), the Inventory of Depressive Symptoms (IDS) and the Young Mania Rating Scale (YMRS) entered the cluster analyses. Factor analysis for mixed data (FAMD) was applied to compute abstract data dimensions, subsequently used to derive the longitudinal trajectories which then served as inputs for a k-mean clustering for longitudinal data. Identified clusters were employed in a linear regression model as predictive variables for SZ-PRS at 11 thresholds. Results Computed by FAMD, the strongest loadings were observed for PANSS and IDS on the first dimension and for IDS on the second dimension. Two clusters of longitudinal trajectories were identified in these dimensions: (A) individuals with continuously low scores on both PANSS and IDS (70.7%) and (B) individuals with consistently high scores on both PANSS and IDS (29.3%). Clusters differed significantly with regard to Global Assessment of Functioning (GAF; higher in (A); FDR-adjusted p-value=2.23x10-10), while there were no significant differences regarding sex, age, diagnoses, center, age at onset, family history or duration of illness. Cluster membership was not significantly associated with the SZ-PRS in either cluster. Discussion Although the results are preliminary and have to be interpreted with caution, the approach of longitudinal clustering to identify cross-diagnostic homogeneous subgroups of individuals appears to be feasible. The fact that more severe psychopathological features were not associated with increased genetic risk burden will also be interesting to explore further.  
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2017
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2017
    
 
    
    
        ISSN (print) / ISBN
        0924-977X
    
 
    
        e-ISSN
        1873-7862
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 27,  
	    Issue: ,  
	    Pages: S401-S402,  
	    Article Number: ,  
	    Supplement: 3 
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Elsevier
        
 
        
            Publishing Place
            Amsterdam
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-503800-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2017-09-07