S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings.
    
    
        
    
    
        
        Physiol. Plant. 162, 49-72 (2017)
    
    
    
      
      
	
	    Nitric oxide (NO) and various reactive nitrogen species (RNS) produced in cells in normal growth conditions and their enhanced production under stress conditions, are responsible for a variety of biochemical aberrations. Present findings demonstrate that sunflower seedling roots exhibit high sensitivity to salt stress in terms of nitrite accumulation. A significant reduction in S-nitrosoglutathione reductase (GSNOR) activity is evident in response to salt stress. Restoration of GSNOR activity with dithioerythritol (DTT) shows that the enzyme is reversibly inhibited under conditions of 120 mM NaCl. Salt stress mediated S-nitrosylation of cytosolic proteins was analyzed in roots and cotyledons using biotin switch assay. LC-MS/MS analysis revealed opposite patterns of S-nitrosylation in seedling cotyledons and roots. Salt stress enhances S-nitrosylation of proteins in cotyledons whereas roots exhibit denitrosylation of proteins. Highest number of proteins having undergone S-nitrosylation belonged to the category of carbohydrate metabolism followed by other metabolic proteins. Of the total 61 proteins observed to be regulated by S-nitrosylation, 17 are unique to cotyledons, 4 are unique to roots whereas 40 are common to both. Eighteen S-nitrosylated proteins are being reported for the first time in plant systems, including pectinesterase, phospholipase D alpha and calmodulin. Further physiological analysis of glyceraldehyde-3-phosphate dehydrogenase and monodehydro-ascorbate reductase showed that salt stress leads to a reversible inhibition of both these enzymes in cotyledons. However, seedling roots exhibit enhanced enzyme activity under salinity stress. These observations implicate the role of S-nitrosylation and denitrosylation in NO signaling thereby regulating various enzyme activities under salinity stress in sunflower seedlings.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Nitric-oxide Production; Nitrosoglutathione Reductase; Nitrosative Stress; Nitrosylated Proteins; Arabidopsis-thaliana; Abiotic Stress; Glyceraldehyde-3-phosphate Dehydrogenase; Tyrosine Nitration; Reactive Nitrogen; Cell-death
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2017
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2017
    
 
    
    
        ISSN (print) / ISBN
        0031-9317
    
 
    
        e-ISSN
        1399-3054
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 162,  
	    Issue: 1,  
	    Pages: 49-72 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Wiley
        
 
        
            Publishing Place
            Hoboken
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30202 - Environmental Health
30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Environmental Sciences
Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-504900-008
G-505700-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2017-09-25