S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings.
Physiol. Plant. 162, 49-72 (2017)
Nitric oxide (NO) and various reactive nitrogen species (RNS) produced in cells in normal growth conditions and their enhanced production under stress conditions, are responsible for a variety of biochemical aberrations. Present findings demonstrate that sunflower seedling roots exhibit high sensitivity to salt stress in terms of nitrite accumulation. A significant reduction in S-nitrosoglutathione reductase (GSNOR) activity is evident in response to salt stress. Restoration of GSNOR activity with dithioerythritol (DTT) shows that the enzyme is reversibly inhibited under conditions of 120 mM NaCl. Salt stress mediated S-nitrosylation of cytosolic proteins was analyzed in roots and cotyledons using biotin switch assay. LC-MS/MS analysis revealed opposite patterns of S-nitrosylation in seedling cotyledons and roots. Salt stress enhances S-nitrosylation of proteins in cotyledons whereas roots exhibit denitrosylation of proteins. Highest number of proteins having undergone S-nitrosylation belonged to the category of carbohydrate metabolism followed by other metabolic proteins. Of the total 61 proteins observed to be regulated by S-nitrosylation, 17 are unique to cotyledons, 4 are unique to roots whereas 40 are common to both. Eighteen S-nitrosylated proteins are being reported for the first time in plant systems, including pectinesterase, phospholipase D alpha and calmodulin. Further physiological analysis of glyceraldehyde-3-phosphate dehydrogenase and monodehydro-ascorbate reductase showed that salt stress leads to a reversible inhibition of both these enzymes in cotyledons. However, seedling roots exhibit enhanced enzyme activity under salinity stress. These observations implicate the role of S-nitrosylation and denitrosylation in NO signaling thereby regulating various enzyme activities under salinity stress in sunflower seedlings.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Nitric-oxide Production; Nitrosoglutathione Reductase; Nitrosative Stress; Nitrosylated Proteins; Arabidopsis-thaliana; Abiotic Stress; Glyceraldehyde-3-phosphate Dehydrogenase; Tyrosine Nitration; Reactive Nitrogen; Cell-death
Keywords plus
Language
english
Publication Year
2017
Prepublished in Year
HGF-reported in Year
2017
ISSN (print) / ISBN
0031-9317
e-ISSN
1399-3054
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 162,
Issue: 1,
Pages: 49-72
Article Number: ,
Supplement: ,
Series
Publisher
Wiley
Publishing Place
Hoboken
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
30203 - Molecular Targets and Therapies
Research field(s)
Environmental Sciences
Enabling and Novel Technologies
PSP Element(s)
G-504900-008
G-505700-001
Grants
Copyright
Erfassungsdatum
2017-09-25