PuSH - Publication Server of Helmholtz Zentrum München

Heckel, B. ; Cretnik, S. ; Kliegman, S.* ; Shouakar-Stash, O.* ; McNeill, K.* ; Elsner, M.

Reductive outer-sphere single electron transfer is an exception rather than the rule in natural and engineered chlorinated ethene dehalogenation.

Environ. Sci. Technol. 51, 9663-9673 (2017)
Research data DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Chlorinated ethenes (CEs) such as perchloroethylene, trichloroethylene and dichloroethylene are notorious groundwater contaminants. Although reductive dehalogenation is key to their environmental and engineered degradation, underlying reaction mechanisms remain elusive. Outer-sphere reductive single electron transfer (OS-SET) has been proposed for such different processes as Vitamin B 12 -dependent biodegradation and zerovalent metal-mediated dehalogenation. Compound-specific isotope effect ( 13 C/ 12 C, 37 Cl/ 35 Cl) analysis offers a new opportunity to test these hypotheses. Defined OS-SET model reactants (CO 2 radical anions, S 2- -doped graphene oxide in water) caused strong carbon (ε C = -7.9‰ to -11.9‰), but negligible chlorine isotope effects (ε Cl = -0.12‰ to 0.04‰) in CEs. Greater chlorine isotope effects were observed in CHCl 3 (ε C = -7.7‰, ε Cl = -2.6‰), and in CEs when the exergonicity of C-Cl bond cleavage was reduced in an organic solvent (reaction with arene radical anions in glyme). Together, this points to dissociative OS-SET (SET to a σ∗ orbital concerted with C-Cl breakage) in alkanes compared to stepwise OS-SET (SET to a π∗ orbital followed by C-Cl cleavage) in ethenes. The nonexistent chlorine isotope effects of chlorinated ethenes in all aqueous OS-SET experiments contrast strongly with pronounced Cl isotope fractionation in all natural and engineered reductive dehalogenations reported to date suggesting that OS-SET is an exception rather than the rule in environmental transformations of chlorinated ethenes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
6.198
1.889
18
26
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Stable-isotope Fractionation; Ratio Mass-spectrometry; Transformation Pathways; Carbon-tetrachloride; Vinyl-chloride; Granular Iron; Dechlorination; Mechanisms; Trichloroethene; Degradation
Language
Publication Year 2017
HGF-reported in Year 2017
ISSN (print) / ISBN 0013-936X
e-ISSN 1520-5851
Quellenangaben Volume: 51, Issue: 17, Pages: 9663-9673 Article Number: , Supplement: ,
Publisher ACS
Publishing Place Washington, DC
Reviewing status Peer reviewed
POF-Topic(s) 20403 - Sustainable Water Management
Research field(s) Environmental Sciences
PSP Element(s) G-504390-001
PubMed ID 28727446
Scopus ID 85028953919
Erfassungsdatum 2017-09-28