PuSH - Publication Server of Helmholtz Zentrum München

Stockwell, B.R.* ; Friedmann Angeli, J.P.F. ; Bayir, H.* ; Bush, A.I.* ; Conrad, M. ; Dixon, S.J.* ; Fulda, S.* ; Gascón, S. ; Hatzios, S.K.* ; Kagan, V.E.* ; Noel, K.* ; Jiang, X.* ; Linkermann, A.* ; Murphy, M.E.* ; Overholtzer, M.* ; Oyagi, A.* ; Pagnussat, G.C.* ; Park, J.* ; Ran, Q.* ; Rosenfeld, C.S.* ; Salnikow, K.* ; Tang, D.* ; Torti, F.M.* ; Torti, S.V.* ; Toyokuni, S.* ; Woerpel, K.A.* ; Zhang, D.D.*

Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.

Cell 171, 273-285 (2017)
Publ. Version/Full Text DOI PMC
Free by publisher
Open Access Green as soon as Postprint is submitted to ZB.
Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Pufa ; Ros ; Cancer ; Cell Death ; Ferroptosis ; Glutathione ; Iron ; Metabolism ; Neurodegeneration ; Peroxidation
ISSN (print) / ISBN 0092-8674
e-ISSN 1097-4172
Journal Cell
Quellenangaben Volume: 171, Issue: 2, Pages: 273-285 Article Number: , Supplement: ,
Publisher Cell Press
Publishing Place Cambridge, Mass.
Non-patent literature Publications
Reviewing status Peer reviewed