Direct infusion resonance-enhanced multiphoton ionization mass spectrometry of liquid samples under vacuum conditions.
Anal. Chem. 89, 10917-10923 (2017)
Direct infusion resonance-enhanced multiphoton ionization (DI-REMPI) was performed on liquid samples, which were introduced to the ion source via a direct liquid interface, to enable the investigation of dissolved aromatic compounds. Desolvation and nebulization of the samples were supported by a heated repeller using flow rates in the upper nL min -1 range. The obtained mass spectra of five pure polycyclic aromatic hydrocarbons as well as complex petroleum samples revealed predominantly molecular ions without evidence of solvent or dopant effects as observed in atmospheric pressure photoionization (APPI) and laser ionization (APLI) with limits of detection in the lower pmol range. Furthermore, it is demonstrated by the analysis of different complex oil samples that DI-REMPI covers a larger m/z range than external volatilization of the sample prior to introduction to the ion source by using thermogravimetry (TG) hyphenated to REMPI time-of-flight mass spectrometry (TOFMS). Analogous to reported setups with direct liquid interface and electron ionization, direct-REMPI may be an option for soft ionization in liquid chromatography. (Figure Presented).
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Pressure Laser Ionization; Single-photon Ionization; Crude-oil; Aromatic-hydrocarbons; Electron Ionization; Gas-chromatography; Multimode Source; Photoionization; Ms; Interface
Keywords plus
Language
english
Publication Year
2017
Prepublished in Year
HGF-reported in Year
2017
ISSN (print) / ISBN
0003-2700
e-ISSN
1520-6882
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 89,
Issue: 20,
Pages: 10917-10923
Article Number: ,
Supplement: ,
Series
Publisher
American Chemical Society (ACS)
Publishing Place
Washington
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504500-001
Grants
Copyright
Erfassungsdatum
2017-10-24