Paige, E.* ; Barrett, J.* ; Pennells, L.* ; Sweeting, M.* ; Willeit, P.* ; di Angelantonio, E.* ; Gudnason, V.* ; Nørdestgaard, B.G.* ; Psaty, B.M.* ; Goldbourt, U.* ; Best, L.G.* ; Assmann, G.* ; Salonen, J.T.* ; Nietert, P.J.* ; Verschuren, W.M.M.* ; Brunner, E.J.* ; Kronmal, R.A.* ; Salomaa, V.* ; Bakker, S.J.L.* ; Dagenais, G.R.* ; Sato, S.* ; Jansson, J.* ; Willeit, J.* ; Onat, A.* ; de la Camara, A.G.* ; Roussel, R.* ; Völzke, H.* ; Dankner, R.* ; Tipping, R.W.* ; Meade, T.W.* ; Donfrancesco, C.* ; Kuller, L.H.* ; Peters, A. ; Gallacher, J.* ; Kromhout, D.* ; Iso, H.* ; Knuiman, M.* ; Casiglia, E.* ; Kavousi, M.* ; Palmieri, L.* ; Sundström, J.* ; Davis, B.R.* ; Njolstad, I.* ; Couper, D.* ; Danesh, J.* ; Thompson, S.G.* ; Wood, A.*
     
    
        
Use of repeated blood pressure and cholesterol measurements to improve cardiovascular disease risk prediction: An individual-participant-data meta-analysis.
    
    
        
    
    
        
        Am. J. Epidemiol. 186, 899-907 (2017)
    
    
    
      
      
	
	    The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Review
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Cardiovascular Disease ; Longitudinal Measurements ; Repeated Measurements ; Risk Factors ; Risk Prediction; Coronary-heart-disease; Multiple; Variability; Models
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2017
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2017
    
 
    
    
        ISSN (print) / ISBN
        0002-9262
    
 
    
        e-ISSN
        1476-6256
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 186,  
	    Issue: 8,  
	    Pages: 899-907 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Oxford University Press
        
 
        
            Publishing Place
            Cary
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Institute of Epidemiology (EPI)
    
 
    
        POF-Topic(s)
        30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
    
 
    
        Research field(s)
        Genetics and Epidemiology
    
 
    
        PSP Element(s)
        G-504000-005
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2017-11-08