PuSH - Publication Server of Helmholtz Zentrum München

Paige, E.* ; Barrett, J.* ; Pennells, L.* ; Sweeting, M.* ; Willeit, P.* ; di Angelantonio, E.* ; Gudnason, V.* ; Nørdestgaard, B.G.* ; Psaty, B.M.* ; Goldbourt, U.* ; Best, L.G.* ; Assmann, G.* ; Salonen, J.T.* ; Nietert, P.J.* ; Verschuren, W.M.M.* ; Brunner, E.J.* ; Kronmal, R.A.* ; Salomaa, V.* ; Bakker, S.J.L.* ; Dagenais, G.R.* ; Sato, S.* ; Jansson, J.* ; Willeit, J.* ; Onat, A.* ; de la Camara, A.G.* ; Roussel, R.* ; Völzke, H.* ; Dankner, R.* ; Tipping, R.W.* ; Meade, T.W.* ; Donfrancesco, C.* ; Kuller, L.H.* ; Peters, A. ; Gallacher, J.* ; Kromhout, D.* ; Iso, H.* ; Knuiman, M.* ; Casiglia, E.* ; Kavousi, M.* ; Palmieri, L.* ; Sundström, J.* ; Davis, B.R.* ; Njolstad, I.* ; Couper, D.* ; Danesh, J.* ; Thompson, S.G.* ; Wood, A.*

Use of repeated blood pressure and cholesterol measurements to improve cardiovascular disease risk prediction: An individual-participant-data meta-analysis.

Am. J. Epidemiol. 186, 899-907 (2017)
Publ. Version/Full Text Research data DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.825
1.805
19
24
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Review
Keywords Cardiovascular Disease ; Longitudinal Measurements ; Repeated Measurements ; Risk Factors ; Risk Prediction; Coronary-heart-disease; Multiple; Variability; Models
Language english
Publication Year 2017
HGF-reported in Year 2017
ISSN (print) / ISBN 0002-9262
e-ISSN 1476-6256
Quellenangaben Volume: 186, Issue: 8, Pages: 899-907 Article Number: , Supplement: ,
Publisher Oxford University Press
Publishing Place Cary
Reviewing status Peer reviewed
Institute(s) Institute of Epidemiology (EPI)
POF-Topic(s) 30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Research field(s) Genetics and Epidemiology
PSP Element(s) G-504000-005
Scopus ID 85031923939
Erfassungsdatum 2017-11-08