PuSH - Publication Server of Helmholtz Zentrum München

Zhu, X. ; Schroll, R. ; Dörfler, U. ; Chen, B.*

Inoculation of soil with an Isoproturon degrading microbial community reduced the pool of "real non-extractable" Isoproturon residues.

Ecotoxicol. Environ. Saf. 149, 182-189 (2018)
Publ. Version/Full Text DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
During pesticides degradation, biogenic non-extractable residues ("apparent NER") may not share the same environmental fate and risks with the "real NER" that are bound to soil matrix. It is not clear how microbial community (MC) inoculation for pesticides degradation would influence the NER composition. To investigate degradation efficiency of pesticides Isoproturon (IPU) and NER composition following MC inoculation, clay particles harboring MC that contains the IPU degrading strain, Sphingomonas sp., were inoculated into soil receiving C-14-labeled IPU addition. Mineralization of IPU was greatly enhanced with MC inoculation that averagely 55.9% of the applied C-14-IPU was consumed up into (CO2)-C-14 during 46 days soil incubation. Isoproturon degradation was more thorough with MC than that in the control: much less amount of metabolic products (4.6% of applied IPU) and NER (35.4%) formed in MC treatment, while the percentages were respectively 30.3% for metabolites and 49.8% for NER in the control. Composition of NER shifted with MC inoculation, that relatively larger amount of IPU was incorporated into the biogenic "apparent NER" in comparison with "real NER". Besides its well-recognized role on enhancing mineralization, MC inoculation with clay particles benefits soil pesticides remediation in term of reducing "real NER" formation, which has been previously underestimated.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords C-14 ; Isoproturon Degradation ; Non-extractable Residues ; Microbial Community ; Soil Incubation; Sphingomonas Sp Strain; Pesticide-residues; Agricultural Soil; Herbicide Isoproturon; Organic-matter; Bound Residues; Hot-spots; Degradation; Mineralization; Tetrabromobisphenol
ISSN (print) / ISBN 0147-6513
e-ISSN 0147-6513
Quellenangaben Volume: 149, Issue: , Pages: 182-189 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place San Diego
Non-patent literature Publications
Reviewing status Peer reviewed