Inoculation of soil with an Isoproturon degrading microbial community reduced the pool of "real non-extractable" Isoproturon residues.
Ecotoxicol. Environ. Saf. 149, 182-189 (2018)
During pesticides degradation, biogenic non-extractable residues ("apparent NER") may not share the same environmental fate and risks with the "real NER" that are bound to soil matrix. It is not clear how microbial community (MC) inoculation for pesticides degradation would influence the NER composition. To investigate degradation efficiency of pesticides Isoproturon (IPU) and NER composition following MC inoculation, clay particles harboring MC that contains the IPU degrading strain, Sphingomonas sp., were inoculated into soil receiving C-14-labeled IPU addition. Mineralization of IPU was greatly enhanced with MC inoculation that averagely 55.9% of the applied C-14-IPU was consumed up into (CO2)-C-14 during 46 days soil incubation. Isoproturon degradation was more thorough with MC than that in the control: much less amount of metabolic products (4.6% of applied IPU) and NER (35.4%) formed in MC treatment, while the percentages were respectively 30.3% for metabolites and 49.8% for NER in the control. Composition of NER shifted with MC inoculation, that relatively larger amount of IPU was incorporated into the biogenic "apparent NER" in comparison with "real NER". Besides its well-recognized role on enhancing mineralization, MC inoculation with clay particles benefits soil pesticides remediation in term of reducing "real NER" formation, which has been previously underestimated.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
C-14 ; Isoproturon Degradation ; Non-extractable Residues ; Microbial Community ; Soil Incubation; Sphingomonas Sp Strain; Pesticide-residues; Agricultural Soil; Herbicide Isoproturon; Organic-matter; Bound Residues; Hot-spots; Degradation; Mineralization; Tetrabromobisphenol
Keywords plus
Language
Publication Year
2018
Prepublished in Year
2017
HGF-reported in Year
2017
ISSN (print) / ISBN
0147-6513
e-ISSN
0147-6513
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 149,
Issue: ,
Pages: 182-189
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
San Diego
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
20402 - Sustainable Plant Production
30203 - Molecular Targets and Therapies
Research field(s)
Environmental Sciences
PSP Element(s)
G-504400-002
G-506400-001
G-504600-006
Grants
Copyright
Erfassungsdatum
2017-11-29