Quenched hexacene optoacoustic nanoparticles.
J. Mater. Chem. B 6, 44-55 (2017)
Optoacoustic (photoacoustic) imaging enables high-resolution optical imaging at depths well beyond optical microscopy, revolutionizing optical interrogation of tissues. Operation in the near-infrared (NIR) is nevertheless necessary to capitalize on the technology potential and reach depths of several centimeters. Using Flash NanoPrecipitation for highly-scalable single-step encapsulation of hydrophobic hexacene at self-quenching concentrations, we propose quenched fluorescence-dye nanoparticles as a potent alternative to NIR metal nanoparticles for strong optoacoustic signal generation. Comprehensive hexacene-based nanoparticle characterization was based on a 5-step approach that examined the physicochemical features (Step 1), optoacoustic signal generation (Step 2), stability (Step 3), biocompatibility (Step 4) and spectral sensitivity (Step 5). Using this characterization framework we showcase the discovery of two nanoparticle formulations, QH2-50 nm and QH2-100 nm that attain superior stability characteristics and optimal optoacoustic properties compared to gold standards commonly employed for near-infrared optoacoustics. We discuss encapsulation and self-quenching (ESQ) of organic dyes as a promising strategy to generate optimal optoacoustic particles.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Substituted Pentacene Derivatives; Carbon Nanotube Toxicity; Confined Impinging Jets; In-vivo; Flash Nanoprecipitation; Gold Nanoparticles; Fluorescent Nanoparticles; Protected Nanoparticles; Thermal-stability; Organic Actives
Keywords plus
Language
english
Publication Year
2017
Prepublished in Year
HGF-reported in Year
2017
ISSN (print) / ISBN
2050-750X
e-ISSN
2050-7518
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 6,
Issue: 1,
Pages: 44-55
Article Number: ,
Supplement: ,
Series
Publisher
Royal Society of Chemistry (RSC)
Publishing Place
Cambridge
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505500-001
Grants
Copyright
Erfassungsdatum
2017-12-11