PuSH - Publication Server of Helmholtz Zentrum München

Rozman, J. ; Rathkolb, B. ; Oestereicher, M.A. ; Schütt, C. ; Ravindranath, A.C. ; Leuchtenberger, S. ; Sharma, S. ; Kistler, M. ; Willershäuser, M.* ; Brommage, R. ; Meehan, T.F.* ; Mason, J.* ; Haselimashhadi, H.* ; Hough, T.* ; Mallon, A.-M.* ; Wells, S.* ; Santos, L.* ; Lelliott, C.J.* ; White, J.K.* ; Sorg, T.* ; Champy, M.-F.* ; Bower, L.R.* ; Reynolds, C.L.* ; Flenniken, A.M.* ; Murray, S.A.* ; Nutter, L.M.J.* ; Svenson, K.L.* ; West, D.* ; Tocchini-Valentini, G.P.* ; Beaudet, A.L.* ; Bosch, F.* ; Braun, R.B.* ; Dobbie, M.S.* ; Gao, X.* ; Herault, Y.* ; Moshiri, A.* ; Moore, B.A.* ; Kent Lloyd, K.C.* ; McKerlie, C.* ; Masuya, H.* ; Tanaka, N.* ; Flicek, P.* ; Parkinson, H.E.* ; Sedlacek, R.* ; Seong, J.K.* ; Wang, C.-K.L.* ; Moore, M.* ; Brown, S.D.* ; Tschöp, M.H. ; Wurst, W. ; Klingenspor, M.* ; Wolf, E.* ; Beckers, J. ; Machicao, F.* ; Peter, A. ; Staiger, H. ; Häring, H.-U. ; Grallert, H. ; Campillos, M. ; Maier, H. ; Fuchs, H. ; Gailus-Durner, V. ; Werner, T.* ; Hrabě de Angelis, M. ; IMPC Consortium (Eickelberg, O.) ; IMPC Consortium (Yildirim, A.Ö.)

Identification of genetic elements in metabolism by high-throughput mouse phenotyping.  

Nat. Commun. 9:288 (2018)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Insulin-resistance; Diabetes-mellitus; Glycemic Traits; Variants; Architecture; Association; Consortium; Pathways; Disease; Biology
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 9, Issue: 1, Pages: , Article Number: 288 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Non-patent literature Publications
Reviewing status Peer reviewed