PuSH - Publication Server of Helmholtz Zentrum München

Hanna, C.W.* ; Taudt, A. ; Huang, J.* ; Gahurova, L.* ; Kranz, A.* ; Andrews, S.* ; Dean, W.* ; Stewart, A.F.* ; Colomé-Tatché, M. ; Kelsey, G.*

MLL2 conveys transcription-independent H3K4 trimethylation in oocytes.

Nat. Struct. Mol. Biol. 25, 73-82 (2018)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Histone 3 K4 trimethylation (depositing H3K4me3 marks) is typically associated with active promoters yet paradoxically occurs at untranscribed domains. Research to delineate the mechanisms of targeting H3K4 methyltransferases is ongoing. The oocyte provides an attractive system to investigate these mechanisms, because extensive H3K4me3 acquisition occurs in nondividing cells. We developed low-input chromatin immunoprecipitation to interrogate H3K4me3, H3K27ac and H3K27me3 marks throughout oogenesis. In nongrowing oocytes, H3K4me3 was restricted to active promoters, but as oogenesis progressed, H3K4me3 accumulated in a transcription-independent manner and was targeted to intergenic regions, putative enhancers and silent H3K27me3-marked promoters. Ablation of the H3K4 methyltransferase gene Mll2 resulted in loss of transcription-independent H3K4 trimethylation but had limited effects on transcription-coupled H3K4 trimethylation or gene expression. Deletion of Dnmt3a and Dnmt3b showed that DNA methylation protects regions from acquiring H3K4me3. Our findings reveal two independent mechanisms of targeting H3K4me3 to genomic elements, with MLL2 recruited to unmethylated CpG-rich regions independently of transcription.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
13.333
2.499
75
88
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Embryonic Stem-cells; Dna Methylation; Chromatin-structure; Enhancer Function; Human Genome; Histone H3; Gene; Hematopoiesis; Initiation; Promoters
Language english
Publication Year 2018
HGF-reported in Year 2018
ISSN (print) / ISBN 1545-9993
e-ISSN 1545-9985
Quellenangaben Volume: 25, Issue: 1, Pages: 73-82 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place New York, NY
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-554200-001
Scopus ID 85042734707
PubMed ID 29323282
Erfassungsdatum 2018-03-12