PuSH - Publication Server of Helmholtz Zentrum München

Viswanath, P.S.* ; Weiser, T.* ; Chintala, P.* ; Mandal, S. ; Dutta, R.

Grading of mammalian cumulus oocyte complexes using machine learning for in vitro embryo culture.

In: (3rd IEEE EMBS International Conference on Biomedical and Health Informatics, 24-27 February 2016, Las Vegas, USA). 2016. 172-175
DOI
Visual observation of Cumulus Oocyte Complexes provides only limited information about its functional competence, whereas the molecular evaluations methods are cumbersome or costly. Image analysis of mammalian oocytes can provide attractive alternative to address this challenge. However, it is complex, given the huge number of oocytes under inspection, subjective nature of the features inspected for identification. Supervised machine learning methods like random forest with annotations from expert biologists can make the analysis task standardized and reduces inter-subject variability. We present a semiautomatic framework for predicting the class an oocyte belongs to, based on multi-object parametric segmentation on the acquired microscopic image followed by a feature based classification using random forests.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Conference contribution
Corresponding Author
ISSN (print) / ISBN 9781509024551
Conference Title 3rd IEEE EMBS International Conference on Biomedical and Health Informatics
Conference Date 24-27 February 2016
Conference Location Las Vegas, USA
Quellenangaben Volume: , Issue: , Pages: 172-175 Article Number: , Supplement: ,
Non-patent literature Publications